Noise reduction in multispectral images using the self-organizing map

被引:1
|
作者
Toivanen, P [1 ]
Laukkanen, M [1 ]
Kaarna, A [1 ]
Mielikainen, J [1 ]
机构
[1] Lappeenranta Univ Technol, Dept Informat Technol, FIN-53851 Lappeenranta, Finland
来源
ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY VIII | 2002年 / 4725卷
关键词
multispectral image; noise reduction; nonlinear filtering; noise model; ordering of multivariate data; self organizing maps; machine vision;
D O I
10.1117/12.478751
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a new group of noise reduction methods for multispectral images is presented. First, a 1-dimensional Self-Organizing Map (SOM) is taught using the pixel vectors of the noisy multispectral image. Then, a gray-level index image is formed containing the indexes of the SOM vectors. Several gray-level noise reduction methods are applied to the index image for three noise types: impulse, Gaussian, and coherent noise. Tests are made for three kinds of noise distrubutions: for all channels, for channels 30 - 50, and for 9 selected channels. Error measures imply that the obtained results are very good for coherent noise images, but rather poor for other noise categories, compared to the bandwise coherent filter.
引用
收藏
页码:195 / 201
页数:7
相关论文
共 50 条
  • [41] Parallel self-organizing map
    Li, WG
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 1999, 9 (01) : 172 - 180
  • [42] The diffuse self-organizing map
    Wang, Y
    Zeng, CH
    Mei, T
    Liu, WQ
    2003 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-5, CONFERENCE PROCEEDINGS, 2003, : 3530 - 3535
  • [43] A Riemannian Self-Organizing Map
    Yu, Dongjun
    Hancock, Edwin R.
    Smith, William A. P.
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2009, PROCEEDINGS, 2009, 5716 : 229 - +
  • [44] The Self-Organizing Map of Trees
    Markus Peura
    Neural Processing Letters, 1998, 8 : 155 - 162
  • [45] A Pipeline Extraction on Forward-Looking Sonar Images Using the Self-Organizing Map
    Tulsook, Siwakorn
    Kasetkasem, Teerasit
    Tipsuwan, Yodyium
    Sugino, Nobuhiko
    Chanwimaluang, Thitiporn
    Hoonsuwan, Phakhachon
    2018 15TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY (ECTI-CON), 2018, : 584 - 587
  • [46] Map matching Using De-Noise Interpolation Kohonen Self-Organizing Maps
    Du, Zhanwei
    Yang, Yongjian
    Sun, Yongxiong
    Zhang, Chijun
    COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, 2011, 460-461 : 680 - 686
  • [47] Evolutionary Self-Organizing Map
    Chang, MG
    Yu, HJ
    Heh, JS
    IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, 1998, : 680 - 685
  • [48] Unsupervised segmentation using a self-organizing map and a noise model estimation in sonar imagery
    Yao, KC
    Mignotte, M
    Collet, C
    Galerne, P
    Burel, G
    PATTERN RECOGNITION, 2000, 33 (09) : 1575 - 1584
  • [49] Color segmentation in multicolor images using node-growing self-organizing map
    Ouyang, Wenbin
    Xu, Bugao
    Yuan, Xiaohui
    COLOR RESEARCH AND APPLICATION, 2019, 44 (02): : 184 - 193
  • [50] Autonomous Data Collection Using a Self-Organizing Map
    Faigl, Jan
    Hollinger, Geoffrey A.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (05) : 1703 - 1715