A Geographical-Temporal Awareness Hierarchical Attention Network for Next Point-of-Interest Recommendation

被引:23
|
作者
Liu, Tongcun [1 ,2 ]
Liao, Jianxin [1 ,2 ]
Wu, Zhigen [3 ]
Wang, Yulong [1 ,2 ]
Wang, Jingyu [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing, Peoples R China
[2] EBUPT Informat Technol CO LTD, Beijing, Peoples R China
[3] Aplustopia Sci Res Inst, Calgary, AB, Canada
来源
ICMR'19: PROCEEDINGS OF THE 2019 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL | 2019年
基金
中国国家自然科学基金;
关键词
Location-based social networks; Attention mechanism; Next POI recommendation; Geographical-temporal awareness;
D O I
10.1145/3323873.3325024
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Obtaining insight into user mobility for next point-of-interest (POI) recommendations is a vital yet challenging task in locationbased social networking. Information is needed not only to estimate user preferences but to leverage sequence relationships from user check-ins. Existing approaches to understanding user mobility gloss over the check-in sequence, making it difficult to capture the subtle POI-POI connections and distinguish relevant check-ins from the irrelevant. We created a geographicallytemporally awareness hierarchical attention network (GT-HAN) to resolve those issues. GT-HAN contains an extended attention network that uses a theory of geographical influence to simultaneously uncover the overall sequence dependence and the subtle POI-POI relationships. We show that the mining of subtle POI-POI relationships significantly improves the quality of next POI recommendations. A context-specific co-attention network was designed to learn changing user preferences by adaptively selecting relevant check-in activities from check-in histories, which enabled GT-HAN to distinguish degrees of user preference for different check-ins. Tests using two large-scale datasets (obtained from Foursquare and Gowalla) demonstrated the superiority of GT-HAN over existing approaches and achieved excellent results.
引用
收藏
页码:7 / 15
页数:9
相关论文
共 50 条
  • [21] Next Point-of-Interest Recommendation with Auto-Correlation Enhanced Multi-Modal Transformer Network
    Qin, Yanjun
    Fang, Yuchen
    Luo, Haiyong
    Zhao, Fang
    Wang, Chenxing
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 2612 - 2616
  • [22] STPR: A Personalized Next Point-of-Interest Recommendation Model with Spatio-Temporal Effects Based on Purpose Ranking
    Huang, Feihu
    Qiao, Shaojie
    Peng, Jian
    Guo, Bing
    Han, Nan
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2021, 9 (02) : 994 - 1005
  • [23] Time-aware Point-of-interest Recommendation
    Yuan, Quan
    Cong, Gao
    Ma, Zongyang
    Sun, Aixin
    Magnenat-Thalmann, Nadia
    SIGIR'13: THE PROCEEDINGS OF THE 36TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH & DEVELOPMENT IN INFORMATION RETRIEVAL, 2013, : 363 - 372
  • [24] A Scalable Knowledge Graph Embedding Model for Next Point-of-Interest Recommendation in Tallinn City
    Ounoughi, Chahinez
    Mouakher, Amira
    Sherzad, Muhammad Ibraheem
    Ben Yahia, Sadok
    RESEARCH CHALLENGES IN INFORMATION SCIENCE (RCIS 2021), 2021, 415 : 435 - 451
  • [25] Intent-aware Graph Neural Network for Point-of-Interest embedding and recommendation
    Wang, Xingliang
    Wang, Dongjing
    Yu, Dongjin
    Wu, Runze
    Yang, Qimeng
    Deng, Shuiguang
    Xu, Guandong
    NEUROCOMPUTING, 2023, 557
  • [26] Long-Term Preference Mining With Temporal and Spatial Fusion for Point-of-Interest Recommendation
    Acharya, Malika
    Mohbey, Krishna Kumar
    Rajput, Dharmendra Singh
    IEEE ACCESS, 2024, 12 : 11584 - 11596
  • [27] Multi-granular approach to learn user mobility preferences for next Point-of-Interest recommendation
    Cai, Li
    Wu, Shicun
    Li, Hai
    Liang, Yu
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 267
  • [28] Personalized Point-of-Interest Recommendation on Ranking with Poisson Factorization
    Su, Yijun
    Li, Xiang
    Tang, Wei
    Zha, Daren
    Xiang, Ji
    Gao, Neng
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [29] Point-of-interest Recommendation using Deep Semantic Model
    Wang, Ziwei
    Zeng, Jun
    Wen, Junhao
    Gao, Min
    Zhou, Wei
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 231
  • [30] Point-of-Interest Preference Model Using an Attention Mechanism in a Convolutional Neural Network
    Kasgari, Abbas Bagherian
    Safavi, Sadaf
    Nouri, Mohammadjavad
    Hou, Jun
    Sarshar, Nazanin Tataei
    Ranjbarzadeh, Ramin
    BIOENGINEERING-BASEL, 2023, 10 (04):