A Geographical-Temporal Awareness Hierarchical Attention Network for Next Point-of-Interest Recommendation

被引:23
|
作者
Liu, Tongcun [1 ,2 ]
Liao, Jianxin [1 ,2 ]
Wu, Zhigen [3 ]
Wang, Yulong [1 ,2 ]
Wang, Jingyu [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing, Peoples R China
[2] EBUPT Informat Technol CO LTD, Beijing, Peoples R China
[3] Aplustopia Sci Res Inst, Calgary, AB, Canada
来源
ICMR'19: PROCEEDINGS OF THE 2019 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL | 2019年
基金
中国国家自然科学基金;
关键词
Location-based social networks; Attention mechanism; Next POI recommendation; Geographical-temporal awareness;
D O I
10.1145/3323873.3325024
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Obtaining insight into user mobility for next point-of-interest (POI) recommendations is a vital yet challenging task in locationbased social networking. Information is needed not only to estimate user preferences but to leverage sequence relationships from user check-ins. Existing approaches to understanding user mobility gloss over the check-in sequence, making it difficult to capture the subtle POI-POI connections and distinguish relevant check-ins from the irrelevant. We created a geographicallytemporally awareness hierarchical attention network (GT-HAN) to resolve those issues. GT-HAN contains an extended attention network that uses a theory of geographical influence to simultaneously uncover the overall sequence dependence and the subtle POI-POI relationships. We show that the mining of subtle POI-POI relationships significantly improves the quality of next POI recommendations. A context-specific co-attention network was designed to learn changing user preferences by adaptively selecting relevant check-in activities from check-in histories, which enabled GT-HAN to distinguish degrees of user preference for different check-ins. Tests using two large-scale datasets (obtained from Foursquare and Gowalla) demonstrated the superiority of GT-HAN over existing approaches and achieved excellent results.
引用
收藏
页码:7 / 15
页数:9
相关论文
共 50 条
  • [1] Exploiting geographical-temporal awareness attention for next point-of-interest recommendation
    Liu, Tongcun
    Liao, Jianxin
    Wu, Zhigen
    Wang, Yulong
    Wang, Jingyu
    NEUROCOMPUTING, 2020, 400 : 227 - 237
  • [2] Next Point-of-Interest Recommendation with Temporal and Multi-level Context Attention
    Li, Ranzhen
    Shen, Yanyan
    Zhu, Yanmin
    2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 1110 - 1115
  • [3] STA-TCN: Spatial-temporal Attention over Temporal Convolutional Network for Next Point-of-interest Recommendation
    Ou, Junjie
    Jin, Haiming
    Wang, Xiaocheng
    Jiang, Hao
    Wang, Xinbing
    Zhou, Chenghu
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2023, 17 (09)
  • [4] Attention-Based Dynamic Preference Model for Next Point-of-Interest Recommendation
    Zheng, Chenwang
    Tao, Dan
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, PT I, 2020, 12384 : 768 - 780
  • [5] Improving the spatial-temporal aware attention network with dynamic trajectory graph learning for next Point-Of-Interest recommendation
    Cao, Gang
    Cui, Shengmin
    Joe, Inwhee
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (03)
  • [6] SSTP: Social and Spatial-Temporal Aware Next Point-of-Interest Recommendation
    Junzhuang Wu
    Yujing Zhang
    Yuhua Li
    Yixiong Zou
    Ruixuan Li
    Zhenyu Zhang
    Data Science and Engineering, 2023, 8 (4) : 329 - 343
  • [7] SSTP: Social and Spatial-Temporal Aware Next Point-of-Interest Recommendation
    Wu, Junzhuang
    Zhang, Yujing
    Li, Yuhua
    Zou, Yixiong
    Li, Ruixuan
    Zhang, Zhenyu
    DATA SCIENCE AND ENGINEERING, 2023, 8 (04) : 329 - 343
  • [8] Exploring Sequential and Collaborative Contexts for Next Point-of-Interest Recommendation
    Liu, Jingyi
    Zhao, Yanyan
    Liu, Limin
    Jia, Shijie
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, 2021, 12815 : 639 - 655
  • [9] Learning Geographical Preferences for Point-of-Interest Recommendation
    Liu, Bin
    Fu, Yanjie
    Yao, Zijun
    Xiong, Hui
    19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), 2013, : 1043 - 1051
  • [10] Exploiting Geographical Influence for Collaborative Point-of-Interest Recommendation
    Ye, Mao
    Yin, Peifeng
    Lee, Wang-Chien
    Lee, Dik-Lun
    PROCEEDINGS OF THE 34TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR'11), 2011, : 325 - 334