High speed capacitive deionization system with flow-through electrodes

被引:20
|
作者
Guo, Lu [1 ]
Ding, Meng [1 ]
Yan, Dong [1 ,2 ,3 ]
Pam, Mei Er [1 ]
Vafakhah, Sareh [1 ]
Gu, Chengding [4 ]
Zhang, Wang [1 ]
Alvarado, Pablo Valdivia Y. [1 ,5 ]
Shi, Yumeng [2 ,3 ]
Yang, Hui Ying [1 ,5 ]
机构
[1] Singapore Univ Technol & Design, Pillar Engn Prod Dev, 8 Somapah Rd, Singapore 487372, Singapore
[2] Shenzhen Univ, Inst Microscale Optoelect, Int Collaborat Lab 2D Mat Optoelect Sci & Technol, Minist Educ, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Engn Technol Res Ctr 2D Mat Informat Funct Device, Inst Microscale Optoelect, Shenzhen 518060, Peoples R China
[4] Yunnan Univ, Sch Mat & Energy, Kunming 650091, Yunnan, Peoples R China
[5] Singapore Univ Technol & Design, Digital Mfg & Design Ctr, Singapore 487372, Singapore
关键词
TiO2; Carbon nanofiber; Flow through electrode capacitive deionization; Electrospinning; Desalination; ELECTROCHEMICAL DEIONIZATION; WATER DESALINATION; BRACKISH-WATER; ANATASE TIO2; PERFORMANCE; ANODE; TECHNOLOGY; ENERGY;
D O I
10.1016/j.desal.2020.114750
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Capacitive deionization (CDI) is considered as a promising approach to sustain fresh water supply with environmental friendliness and convenient electrode regeneration. As a novel CDI system, flow-through electrode (FTE) CDI is drawing researchers' attention due to its structural simplicity, highly compact cells, cost effectiveness, and fast salt adsorption kinetics that are applicable for large-scale desalination of saline water. However, the FTE CDI architecture requires electrodes with robust structures and preferable permeability, considering the direct flow through mechanism, which limits their choices of electrode materials. Herein, we propose a facial electrospinning method to fabricate three-dimensional TiO2 encapsulated carbon nanofiber (TiO2@CNF), which possesses good mechanical stability and highly permeable macroporous-mesoporous structure to endure the reasonable feed pressure upon high-speed influent flushing. Moreover, the TiO2@CNF electrode shows evident pseudo-capacitive performance as well as high electrical conductivity. By integrating the features of both the TiO2@CNF and the FTE CDI architecture, the as-fabricated system displays a salt removal capacity of 15.50 mg g(-1) and a desalination rate of 1.26 mg g(-1) min(-1) at 1.4 V. The TiO2@CNF provides a promising alternative for FTE CDI towards the future desalination technologies.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Hierarchically porous electrospun carbon nanofiber for high-rate capacitive deionization electrodes
    Waugh, John B.
    Babu, Siddharth Komini
    Kang, Qinjun
    Moehring, Nicole K.
    Benavidez, Angelica
    Wang, Xiaojing
    Kidambi, Piran R.
    Pintauro, Peter N.
    Spendelow, Jacob S.
    DESALINATION, 2024, 584
  • [32] High performance ordered mesoporous carbon/carbon nanotube composite electrodes for capacitive deionization
    Peng, Zheng
    Zhang, Dengsong
    Shi, Liyi
    Yan, Tingting
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (14) : 6603 - 6612
  • [33] Anion-/cationic compounds enhance the dispersion of flow electrodes to obtain high capacitive deionization performance
    Huang, Henan
    Li, Fengying
    Yu, Chenglong
    Fang, Hansun
    Guo, Xinchun
    Li, Danping
    DESALINATION, 2021, 515 (515)
  • [34] MnO2 decorated porous carbon derived from Enteromorpha prolifera as flow-through electrode for dual-mode capacitive deionization
    Liu, Yong
    Geng, Bo
    Zhang, Yuchen
    Gao, Xin
    Du, Xin
    Dou, Xinyue
    Zhu, Haiguang
    Yuan, Xun
    DESALINATION, 2021, 504
  • [35] Towards pilot scale flow-electrode capacitive deionization
    Koeller, Niklas
    Mankertz, Lukas
    Finger, Selina
    Linnartz, Christian J.
    Wessling, Matthias
    DESALINATION, 2024, 572
  • [36] Water Desalination Using Capacitive Deionization with Microporous Carbon Electrodes
    Porada, S.
    Weinstein, L.
    Dash, R.
    van der Wal, A.
    Bryjak, M.
    Gogotsi, Y.
    Biesheuvel, P. M.
    ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (03) : 1194 - 1199
  • [37] Capacitive deionization with wire-shaped electrodes
    Mubita, T. M.
    Porada, S.
    Biesheuvel, P. M.
    van der Wal, A.
    Dykstra, J. E.
    ELECTROCHIMICA ACTA, 2018, 270 : 165 - 173
  • [38] Frontiers of carbon materials as capacitive deionization electrodes
    Li, Yuanyuan
    Chen, Nan
    Li, Zengling
    Shao, Huibo
    Qu, Liangti
    DALTON TRANSACTIONS, 2020, 49 (16) : 5006 - 5014
  • [39] Covalent triazine-based frameworks as electrodes for high-performance membrane capacitive deionization
    Liu, Daohua
    Ning, Xun-an
    Hong, Yanxiang
    Li, Yang
    Bian, Qiushi
    Zhang, Jianpei
    ELECTROCHIMICA ACTA, 2019, 296 : 327 - 334
  • [40] Study of carbon aerogel-activated carbon composite electrodes for capacitive deionization application
    Kohli, D. K.
    Singh, Rashmi
    Singh, M. K.
    Singh, Ashish
    Khardekar, R. K.
    Sankar, P. Ram
    Tiwari, Pragya
    Gupta, P. K.
    DESALINATION AND WATER TREATMENT, 2012, 49 (1-3) : 130 - 135