Assessment of SnO2-nanocrystal-based luminescent glass-ceramic waveguides for integrated photonics

被引:15
作者
Thi Ngoc Lam Tran [1 ,2 ,3 ,4 ]
Armellini, Cristina [2 ,3 ]
Varas, Stefano [2 ,3 ]
Carpentiero, Alessandro [2 ,3 ]
Chiappini, Andrea [2 ,3 ]
Gluchowski, Pawel [5 ]
Iacob, Erica [6 ]
Ischia, Gloria [7 ]
Scotognella, Francesco [8 ,9 ]
Bollani, Monica [1 ]
Lukowiak, Anna [5 ]
Righini, Giancarlo C. [10 ]
Ferrari, Maurizio [2 ,3 ]
Chiasera, Alessandro [2 ,3 ]
机构
[1] CNR, IFN, I-20133 Milan, Italy
[2] CNR, IFN, CSMFO Lab, Via Cascata 56-C, I-38123 Povo, Italy
[3] FBK Photon Unit, Via Cascata 56-C, I-38123 Povo, Italy
[4] Ho Chi Minh City Univ Technol & Educ, Fac Sci Appl, Dept Mat Technol, Vo Van Ngan St 1, Ho Chi Minh City 720214, Vietnam
[5] PAS, Inst Low Temp & Struct Res, Ul Okolna 2, PL-50422 Wroclaw, Poland
[6] Fdn Bruno Kessler, Micro Nano Facil, Ctr Mat & Microsyst, Via Sommar 18, I-38123 Povo, Trento, Italy
[7] Univ Trento, Dept Ind Engn, Via Sommar 9, I-38123 Povo, Trento, Italy
[8] Politecn Milan, Dept Phys, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[9] Ist Italiano Tecnol IIT, Ctr Nano Sci & Technol PoliMi, Via Giovanni Pascoli 70-3, I-20133 Milan, Italy
[10] CNR, IFAC, MiPLab, Via Madonna Piano 10, I-50019 Sesto Fiorentino, Italy
关键词
SiO2-SnO2:Er3+; Rare-earth luminescence sensitizers; Transparent glass-ceramics; Luminescent planar waveguides; Nanocomposites; Sol-gel; THIN-FILMS; ENVIRONMENT SEGREGATION; SNO2; NANOCRYSTALS; ENERGY-TRANSFER; SILICA; EMISSION; EU3+;
D O I
10.1016/j.ceramint.2020.10.137
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
For integrated photonics, waveguide structures based on rare-earth-activated glasses are potential candidates for implementing compact integrated light sources and amplifiers. However, rare-earth ions (REs) possess low absorption cross-section, and this limits the light emission and amplification efficiency. As long as the REs are involved, there are other phenomena detrimental to their luminescence quantum yield including ion-ion interactions and non-radiative relaxation processes. To solve such problems, photonic glass-ceramics can be strategic solutions. Transparent glass-ceramics combine interesting properties of both amorphous and crystalline phases and offer specific characteristics of capital importance in photonics. More important, photonic glass-ceramics can tailor and enhance the spectroscopic properties of the rare-earth ions depending on their compositions and nature. In this work, we studied SnO2-nanocrystal-based transparent glass-ceramic planar waveguides activated by rare-earths to give solutions for the problems mentioned above and enhance the rare-earth luminescence efficiency for integrated photonics. SiO2-SnO2:Er3+ planar waveguides containing 30 mol% SnO2 nanocrystals were fabricated by sol-gel method and dip-coating technique. The planar waveguides were assessed by various characterization techniques to ensure the applicability of such glass-ceramics for integrated photonics. The experimental assessment of the SiO2-SnO2:Er3+ planar waveguides focused on the key considered photonic characteristics including the structural, morphological, spectroscopic, and especially optical waveguiding properties. The photoluminescence measurements put in evidence the role of SnO2 nanocrystals as efficient Er3+ luminescence sensitizers. Moreover, the incorporation of Er3+ ions in SnO2 nanocrystals was demonstrated to reduce the effect of non-radiative relaxation processes on the luminescence of the Er3+ ions and thus led to higher luminescence efficiency. Majority of the Er3+ ions (97%) was confirmed to be imbedded in the SnO2 nanocrystals. TheSiO(2)-SnO2:Er3+ glass-ceramic planar waveguides have confined propagation modes, step-index profile with high confinement of 82% at 1542 nm and especially, low losses of 0.6 +/- 0.2 dB/cm at 1542 nm.
引用
收藏
页码:5534 / 5541
页数:8
相关论文
共 42 条
[11]   Erbium-activated silica xerogels: spectroscopic and optical properties [J].
Duverger, C ;
Montagna, M ;
Rolli, R ;
Ronchin, S ;
Zampedri, L ;
Fossi, M ;
Pelli, S ;
Righini, GC ;
Monteil, A ;
Armellini, C ;
Ferrari, M .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2001, 280 (1-3) :261-268
[12]   Transparent glass-ceramics for optical applications [J].
Dymshits, O. ;
Shepilov, M. ;
Zhilin, A. .
MRS BULLETIN, 2017, 42 (03) :200-205
[13]  
Fern J., 2019, P SPIE, DOI [10.1117/12.2507261, DOI 10.1117/12.2507261,109140T-1/12]
[14]  
Fernandez J., 2020, P SPIE, V11357, DOI [10.1117/12.2554585, DOI 10.1117/12.2554585,113570L-1/10]
[15]  
Fernandez J., 2018, P SPIE, DOI [10.1117/12.2290170, DOI 10.1117/12.2290170,1052805-1/9]
[16]   Glass-Ceramic Materials for Guided-Wave Optics [J].
Ferrari, Maurizio ;
Righini, Giancarlo C. .
INTERNATIONAL JOURNAL OF APPLIED GLASS SCIENCE, 2015, 6 (03) :240-248
[17]   Transparent Glass-Ceramics Produced by Sol-Gel: A Suitable Alternative for Photonic Materials [J].
Gorni, Giulio ;
Velazquez, Jose J. ;
Mosa, Jadra ;
Balda, Rolindes ;
Fernandez, Joaquin ;
Duran, Alicia ;
Castro, Yolanda .
MATERIALS, 2018, 11 (02)
[18]   High-efficient Eu3+ red emission due to excitation energy transfer from nano-sized SnO2 crystals [J].
Hayakawa, T. ;
Nogami, M. .
AICAM 2005, 2006, 11-12 :579-+
[19]   NEW METHOD FOR MEASURING REFRACTIVE-INDEX AND THICKNESS OF LIQUID AND DEPOSITED SOLID THIN-FILMS [J].
KERSTEN, RT .
OPTICS COMMUNICATIONS, 1975, 13 (03) :327-329
[20]   Photonic glass ceramics based on SnO2 nanocrystals: advances and perspectives [J].
Lam Thi Ngoc Tran ;
Armellini, Cristina ;
Balda, Rolindas ;
Benabdesselam, Mourad ;
Berneschi, Simone ;
Blanc, Wilfried ;
Boulard, Brigitte ;
Carpentiero, Alessandro ;
Chiappini, Andrea ;
Chiasera, Alessandro ;
Dentella, Paola ;
Dorosz, Dominik ;
Eaton, Shane ;
Falconi, Mario Christian ;
Fernandez, Joaquin ;
Ferrari, Maurizio ;
Gates, James ;
Gluchowski, Pawel ;
Ischia, Gloria ;
Lukowiak, Anna ;
Mady, Franck ;
Massella, Damiano ;
Conti, Gualtiero Nunzi ;
Prudenzano, Francesco ;
Rossi, Barbara ;
Ramponi, Roberta ;
Righini, Giancarlo C. ;
Sazio, Pier-John ;
Speranza, Giorgio ;
Varas, Stefano ;
Zonta, Daniele ;
Zur, Lidia .
OPTICAL COMPONENTS AND MATERIALS XVII, 2020, 11276