On the Sum of Reciprocal of Polynomial Applied to Higher Order Recurrences
被引:6
|
作者:
Trojovsky, Pavel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hradec Kralove, Fac Sci, Dept Math, Hradec Kralove 50003, Czech RepublicUniv Hradec Kralove, Fac Sci, Dept Math, Hradec Kralove 50003, Czech Republic
Trojovsky, Pavel
[1
]
机构:
[1] Univ Hradec Kralove, Fac Sci, Dept Math, Hradec Kralove 50003, Czech Republic
linear recurrence;
higher order sequence;
Landau symbol;
asymptotic equivalence;
FIBONACCI;
D O I:
10.3390/math7070638
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Recently a lot of papers have been devoted to partial infinite reciprocal sums of a higher-order linear recursive sequence. In this paper, we continue this program by finding a sequence which is asymptotically equivalent to partial infinite sums, including a reciprocal of polynomial applied to linear higher order recurrences.
机构:
Univ Lorraine, UMR 7503, LORIA, F-54506 Vandoeuvre Les Nancy, FranceUniv Lorraine, UMR 7503, LORIA, F-54506 Vandoeuvre Les Nancy, France
Jamet, Damien
Popoli, Pierre
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lorraine, Inst Elie Cartan Lorraine, CNRS, UMR 7502, F-54506 Vandoeuvre Les Nancy, FranceUniv Lorraine, UMR 7503, LORIA, F-54506 Vandoeuvre Les Nancy, France
Popoli, Pierre
论文数: 引用数:
h-index:
机构:
Stoll, Thomas
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES,
2021,
13
(05):
: 791
-
814
机构:
Univ Houston Downtown, Dept Math & Stat, One Main St, Houston, TX 77002 USAUniv Houston Downtown, Dept Math & Stat, One Main St, Houston, TX 77002 USA
Koshkin, Sergiy
Rodriguez, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Houston Downtown, Dept Math & Stat, One Main St, Houston, TX 77002 USAUniv Houston Downtown, Dept Math & Stat, One Main St, Houston, TX 77002 USA