Data-driven ICU management: Using Big Data and algorithms to improve outcomes

被引:27
作者
Carra, Giorgia [1 ]
Salluh, Jorge I. F. [2 ,4 ]
da Silva Ramos, Fernando Jose [3 ]
Meyfroidt, Geert [1 ]
机构
[1] Univ Hosp Leuven, Dept Intens Care Med, UZ Herestr 49,Box 7003, B-3000 Leuven, Belgium
[2] DOr Inst Res & Educ, Crit Care Dept, Rio De Janeiro, Brazil
[3] Hosp BP Mirante, Crit Care Dept, Martiniano Carvalho 965 Bela Vista, BR-01323001 Sao Paulo, Brazil
[4] Univ Fed Rio de Janeiro, Res Dept Epimed Solut, Postgrad Program, Rua Diniz Cordeiro 30 Botafogo, BR-22281100 Rio De Janeiro, RJ, Brazil
关键词
Big data; Data mining; Machine learning; Predictive modeling; Intensive care unit; CRITICALLY-ILL PATIENTS; INTENSIVE-CARE; NEUROCRITICAL CARE; RISK PREDICTION; ILLNESS SCORES; SEVERITY; READMISSION; VALIDATION; SEPSIS; INJURY;
D O I
10.1016/j.jcrc.2020.09.002
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
The digitalization of the Intensive Care Unit (ICU) led to an increasing amount of clinical data being collected at the bedside. The term "Big Data" can be used to refer to the analysis of these datasets that collect enormous amount of data of different origin and format. Complexity and variety define the value of Big Data. In fact, the retrospective analysis of these datasets allows to generate new knowledge, with consequent potential improvements in the clinical practice. Despite the promising start of Big Data analysis in medical research, which has seen a rising number of peer-reviewed articles, very limited applications have been used in ICU clinical practice. A close future effort should be done to validate the knowledge extracted from clinical Big Data and implement it in the clinic. In this article, we provide an introduction to Big Data in the ICU, from data collection and data analysis, to the main successful examples of prognostic, predictive and classification models based on ICU data. In addition, we focus on the main challenges that these models face to reach the bedside and effectively improve ICU care. (C) 2020 Published by Elsevier Inc.
引用
收藏
页码:300 / 304
页数:5
相关论文
共 47 条
[1]   Fusing Randomized Trials With Big Data The Key to Self-learning Health Care Systems? [J].
Angus, Derek C. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2015, 314 (08) :767-768
[2]   Putting Risk Prediction in Perspective: Relative Utility Curves [J].
Baker, Stuart G. .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2009, 101 (22) :1538-1542
[3]  
Cao HQ, 2008, IEEE ENG MED BIO, P3803, DOI 10.1109/IEMBS.2008.4650037
[4]   "Big Data" in the Intensive Care Unit Closing the Data Loop [J].
Celi, Leo Anthony ;
Mark, Roger G. ;
Stone, David J. ;
Montgomery, Robert A. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2013, 187 (11) :1157-1160
[5]   Data Collection and Interpretation [J].
Citerio, Giuseppe ;
Park, Soojin ;
Schmidt, J. Michael ;
Moberg, Richard ;
Suarez, Jose I. ;
Le Roux, Peter D. .
NEUROCRITICAL CARE, 2015, 22 (03) :360-368
[6]   Recommendations for the use of multimodal monitoring in the neurointensive care unit [J].
Citerio, Giuseppe ;
Oddo, Mauro ;
Taccone, Fabio Silvio .
CURRENT OPINION IN CRITICAL CARE, 2015, 21 (02) :113-119
[7]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.1111/eci.12376, 10.7326/M14-0698, 10.1038/bjc.2014.639, 10.1186/s12916-014-0241-z, 10.7326/M14-0697, 10.1016/j.jclinepi.2014.11.010, 10.1016/j.eururo.2014.11.025, 10.1136/bmj.g7594, 10.1002/bjs.9736]
[8]   Severity of Illness Scores May Misclassify Critically Ill Obese Patients* [J].
Deliberato, Rodrigo Octavio ;
Ko, Stephanie ;
Komorowski, Matthieu ;
Armengol de La Hoz, M. A. ;
Frushicheva, Maria P. ;
Raffa, Jesse D. ;
Johnson, Alistair E. W. ;
Anthony, Leo ;
Stone, David J. .
CRITICAL CARE MEDICINE, 2018, 46 (03) :394-400
[9]  
Doshi-Velez F., 2017, ML, V1, DOI 10.48550/arXiv.1702.08608
[10]  
Fenech M., 2018, Future Advocacy