Isotopic analysis of respired CO2 during decomposition of separated soil organic matter pools

被引:64
作者
Crow, Susan E.
Sulzman, Elizabeth W.
Rugh, William D.
Bowden, Richard D.
Lajtha, Kate
机构
[1] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA
[2] Oregon State Univ, Dept Crop & Soil Sci, Corvallis, OR 97331 USA
[3] Oregon State Univ, Dept Ocean & Atmospher Sci, Corvallis, OR 97331 USA
[4] Allegheny Coll, Dept Environm Sci, Meadville, PA 16335 USA
基金
美国国家科学基金会;
关键词
alfisol; andisol; coniferous forest; deciduous forest; delta C-13; density separation; isotopic fractionation; organic matter; soil respiration;
D O I
10.1016/j.soilbio.2006.04.007
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
A detailed understanding of the processes that contribute to the delta C-13 value of respired CO2 is necessary to make links between the isotopic signature of CO2 efflux from the soil surface and various sources within the soil profile. We used density fractionation to divide soils from two forested sites that are a part of an ongoing detrital manipulation experiment (the Detrital Input and Removal Treatments, or DIRT project) into two soil organic matter pools, each of which contributes differently to total soil CO2 efflux. In both sites, distinct biological pools resulted from density fractionation; however, our results do not always support the concept that the light fraction is readily decomposable whereas the heavy fraction is recalcitrant. In a laboratory incubation following density fractionation we found that cumulative respiration over the course of the incubation period was greater from the light fraction than from the heavy fraction for the deciduous site, while the opposite was true for the coniferous site. Use of stable isotopes yielded insight as to the nature of the density fractions, with the heavy fraction solids from both forests isotopically enriched relative to those of the light fraction. The isotopic signature of respired CO2, however, was more complicated. During incubation of the fractions there was an initial isotopic depletion of the respired CO2 compared to the substrate for both soil fractions from both forests. Over time for both fractions of both soils the respired delta C-13 reflected more closely the initial substrate value; however, the transition from depleted to enriched respiration relative to substrate occurs at a different stage of decomposition depending on site and substrate recalcitrance. We found a relationship between cumulative respiration during the incubation period and the duration of the transition from isotopically depleted to enriched respiration in the coniferous site but not the deciduous site. Our results suggest that a shift in microbial community or to dead microbial biomass as a substrate could be responsible for the transition in the isotopic signature of respired CO2 during decomposition. It is likely that a combination of organic matter quality and isotopic discrimination by microbes, in addition to differences in microbial community composition, contribute to the isotopic signature of different organic matter fractions. it is apparent that respired delta(CO2)-C-13 cannot be assumed to be a direct representation of the substrate delta C-13. Detailed knowledge of the soil characteristics at a particular site is necessary to interpret relationships between the isotopic values of a substrate and respired CO2. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3279 / 3291
页数:13
相关论文
共 60 条
  • [1] Relationship between soil organic C degradability and the evolution of the δ13C signature in profiles under permanent grassland
    Accoe, F
    Boeckx, P
    Van Cleemput, O
    Hofman, G
    [J]. RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2003, 17 (23) : 2591 - 2596
  • [2] [Anonymous], 1996, EVALUATION SOIL ORGA
  • [3] Turnover and storage of C and N in five density fractions from California annual grassland surface soils
    Baisden, WT
    Amundson, R
    Cook, AC
    Brenner, DL
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2002, 16 (04)
  • [4] NATURAL C-13 ABUNDANCE AS A TRACER FOR STUDIES OF SOIL ORGANIC-MATTER DYNAMICS
    BALESDENT, J
    MARIOTTI, A
    GUILLET, B
    [J]. SOIL BIOLOGY & BIOCHEMISTRY, 1987, 19 (01) : 25 - 30
  • [5] DEPLETION OF C-13 IN LIGNIN AND ITS IMPLICATIONS FOR STABLE CARBON ISOTOPE STUDIES
    BENNER, R
    FOGEL, ML
    SPRAGUE, EK
    HODSON, RE
    [J]. NATURE, 1987, 329 (6141) : 708 - 710
  • [6] The effect of soil texture and roots on the stable carbon isotope composition of soil organic carbon
    Bird, M
    Kracht, O
    Derrien, D
    Zhou, Y
    [J]. AUSTRALIAN JOURNAL OF SOIL RESEARCH, 2003, 41 (01): : 77 - 94
  • [7] CARBON ISOTOPIC FRACTIONATION IN HETEROTROPHIC MICROBIAL-METABOLISM
    BLAIR, N
    LEU, A
    MUNOZ, E
    OLSEN, J
    KWONG, E
    DESMARAIS, D
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1985, 50 (04) : 996 - 1001
  • [8] BOUTTON T W, 1991, P173
  • [9] δ13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem
    Boutton, TW
    Archer, SR
    Midwood, AJ
    Zitzer, SF
    Bol, R
    [J]. GEODERMA, 1998, 82 (1-3) : 5 - 41
  • [10] FLUXES OF GREENHOUSE GASES BETWEEN SOILS AND THE ATMOSPHERE IN A TEMPERATE FOREST FOLLOWING A SIMULATED HURRICANE BLOWDOWN
    BOWDEN, RD
    CASTRO, MS
    MELILLO, JM
    STEUDLER, PA
    ABER, JD
    [J]. BIOGEOCHEMISTRY, 1993, 21 (02) : 61 - 71