3D multi-scale deep convolutional neural networks for pulmonary nodule detection

被引:25
作者
Peng, Haixin [1 ]
Sun, Huacong [1 ]
Guo, Yanfei [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
OBJECT DETECTION; IMAGES;
D O I
10.1371/journal.pone.0244406
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With the rapid development of big data and artificial intelligence technology, computer-aided pulmonary nodule detection based on deep learning has achieved some successes. However, the sizes of pulmonary nodules vary greatly, and the pulmonary nodules have visual similarity with structures such as blood vessels and shadows around pulmonary nodules, which make the quick and accurate detection of pulmonary nodules in CT image still a challenging task. In this paper, we propose two kinds of 3D multi-scale deep convolution neural networks for nodule candidate detection and false positive reduction respectively. Among them, the nodule candidate detection network consists of two parts: 1) the backbone network part Res2SENet, which is used to extract multi-scale feature information of pulmonary nodules, it is composed of the multi-scale Res2Net modules of multiple available receptive fields at a granular level and the squeeze-and-excitation units; 2) the detection part, which uses a region proposal network structure to determine region candidates, and introduces context enhancement module and spatial attention module to improve detection performance. The false positive reduction network, also composed of the multi-scale Res2Net modules and the squeeze-and-excitation units, can further classify the nodule candidates generated by the nodule candidate detection network and screen out the ground truth positive nodules. Finally, the prediction probability generated by the nodule candidate detection network is weighted average with the prediction probability generated by the false positive reduction network to obtain the final results. The experimental results on the publicly available LUNA16 dataset showed that the proposed method has a superior ability to detect pulmonary nodules in CT images.
引用
收藏
页数:14
相关论文
共 27 条
[1]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[2]  
Bray F, 2018, CA-CANCER J CLIN, V68, P394, DOI [10.3322/caac.21492, 10.3322/caac.21609]
[3]   Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection [J].
Dou, Qi ;
Chen, Hao ;
Yu, Lequan ;
Qin, Jing ;
Heng, Pheng-Ann .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2017, 64 (07) :1558-1567
[4]   Res2Net: A New Multi-Scale Backbone Architecture [J].
Gao, Shang-Hua ;
Cheng, Ming-Ming ;
Zhao, Kai ;
Zhang, Xin-Yu ;
Yang, Ming-Hsuan ;
Torr, Philip .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (02) :652-662
[5]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[6]  
Hu J., 2019, 2019 12 INT C IM SIG, P1, DOI DOI 10.1109/CISP-BMEI48845.2019.8966045
[7]  
Jia Ding, 2017, Medical Image Computing and Computer Assisted Intervention MICCAI 2017. 20th International Conference. Proceedings: LNCS 10435, P559, DOI 10.1007/978-3-319-66179-7_64
[8]   S4ND: Single-Shot Single-Scale Lung Nodule Detection [J].
Khosravan, Naji ;
Bagci, Ulas .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT II, 2018, 11071 :794-802
[9]  
Li F, 2019, INT CONF ACOUST SPEE, P1214, DOI [10.1109/ICASSP.2019.8683537, 10.1109/icassp.2019.8683537]
[10]   Feature Pyramid Networks for Object Detection [J].
Lin, Tsung-Yi ;
Dollar, Piotr ;
Girshick, Ross ;
He, Kaiming ;
Hariharan, Bharath ;
Belongie, Serge .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :936-944