Branch continuation inside the essential spectrum for the nonlinear Schrodinger equation

被引:11
|
作者
Evequoz, Gilles [1 ]
Weth, Tobias [1 ]
机构
[1] Goethe Univ Frankfurt, Inst Mathemat, Robert Mayer Str 10, D-60629 Frankfurt, Germany
关键词
Nonlinear Schrodinger equation; Nonlinear Helmholtz equation; Global branch of solutions; A priori bounds; Leray-Schauder fixed-point index; SEMILINEAR ELLIPTIC PROBLEMS; SCALAR FIELD-EQUATIONS; POSITIVE SOLUTIONS; BIFURCATION; EXISTENCE; THEOREMS;
D O I
10.1007/s11784-016-0362-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonlinear stationary Schrodinger equation -Delta u - lambda u = Q(x)vertical bar u vertical bar(p-2) u, in R-N in the case where N >= 3, p is a superlinear, subcritical exponent, Q is a bounded, nonnegative and nontrivial weight function with compact support in R-N and lambda is an element of R is a parameter. Under further restrictions either on the exponent p or on the shape of Q, we establish the existence of a continuous branch C of nontrivial solutions to this equation which intersects {lambda} x L-s(R-N) for every lambda is an element of (-infinity, lambda(Q)) and s > 2N/N-1. Here, lambda(Q) > 0 is an explicit positive constant which only depends on N and diam(supp Q). In particular, the set of values lambda along the branch enters the essential spectrum of the operator -Delta.
引用
收藏
页码:475 / 502
页数:28
相关论文
共 50 条
  • [21] Spectrum of the ballooning Schrodinger equation
    Dewar, RL
    PLASMA PHYSICS AND CONTROLLED FUSION, 1997, 39 (03) : 453 - 470
  • [22] Exact solutions to nonlinear Schrodinger equation and higher-order nonlinear Schrodinger equation
    Ren Ji
    Ruan Hang-Yu
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 50 (03) : 575 - 578
  • [23] FROM RESOLVENT ESTIMATES TO UNIQUE CONTINUATION FOR THE SCHRODINGER EQUATION
    Seo, Ihyeok
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (12) : 8755 - 8784
  • [24] Unique continuation for the Schrodinger equation with gradient vector potentials
    Dong, Hongjie
    Staubach, Wolfgang
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (07) : 2141 - 2149
  • [25] Neural networks for computing and denoising the continuous nonlinear Fourier spectrum in focusing nonlinear Schrodinger equation
    Sedov, Egor V.
    Freire, Pedro J.
    Seredin, Vladimir V.
    Kolbasin, Vladyslav A.
    Kamalian-Kopae, Morteza
    Chekhovskoy, Igor S.
    Turitsyn, Sergei K.
    Prilepsky, Jaroslaw E.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [26] Solutions of a nonlinear Schrodinger equation
    deFigueiredo, DG
    Ding, YH
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2002, 8 (03) : 563 - 584
  • [27] Multifrequency nonlinear Schrodinger equation
    Castello-Lurbe, David
    Silvestre, Enrique
    Andres, Miguel V.
    OPTICS LETTERS, 2024, 49 (16) : 4713 - 4716
  • [28] KAM for the nonlinear Schrodinger equation
    Eliasson, L. Hakan
    Kuksin, Sergei B.
    ANNALS OF MATHEMATICS, 2010, 172 (01) : 371 - 435
  • [29] Fractional nonlinear Schrodinger equation
    Mendez-Navarro, Jesus A.
    Naumkin, Pavel I.
    Sanchez-Suarez, Isahi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (06):
  • [30] On Nonlinear Equation of Schrodinger type
    Soltanov, Kamal N.
    9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2012), 2012, 1493 : 923 - 932