Estimating causal effects for multivalued treatments: a comparison of approaches
被引:94
|
作者:
Linden, Ariel
论文数: 0引用数: 0
h-index: 0
机构:
Linden Consulting Grp LLC, 1301 North Bay Dr, Ann Arbor, MI 48103 USA
Univ Michigan, Sch Publ Hlth, Dept Hlth Management & Policy, Ann Arbor, MI 48109 USALinden Consulting Grp LLC, 1301 North Bay Dr, Ann Arbor, MI 48103 USA
Linden, Ariel
[1
,3
]
Uysal, S. Derya
论文数: 0引用数: 0
h-index: 0
机构:
IHS, Dept Econ & Finance, Vienna, AustriaLinden Consulting Grp LLC, 1301 North Bay Dr, Ann Arbor, MI 48103 USA
Uysal, S. Derya
[2
]
Ryan, Andrew
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Sch Publ Hlth, Dept Hlth Management & Policy, Ann Arbor, MI 48109 USALinden Consulting Grp LLC, 1301 North Bay Dr, Ann Arbor, MI 48103 USA
Ryan, Andrew
[3
]
Adams, John L.
论文数: 0引用数: 0
h-index: 0
机构:
Kaiser Permanente, Ctr Effectiveness & Safety Res, Pasadena, CA USALinden Consulting Grp LLC, 1301 North Bay Dr, Ann Arbor, MI 48103 USA
Adams, John L.
[4
]
机构:
[1] Linden Consulting Grp LLC, 1301 North Bay Dr, Ann Arbor, MI 48103 USA
[2] IHS, Dept Econ & Finance, Vienna, Austria
[3] Univ Michigan, Sch Publ Hlth, Dept Hlth Management & Policy, Ann Arbor, MI 48109 USA
[4] Kaiser Permanente, Ctr Effectiveness & Safety Res, Pasadena, CA USA
Interventions with multivalued treatments are common in medical and health research, such as when comparing the efficacy of competing drugs or interventions, or comparing between various doses of a particular drug. In recent years, there has been a growing interest in the development of multivalued treatment effect estimators using observational data. In this paper, we compare the performance of commonly used regression-based methods that estimate multivalued treatment effects based on the unconfoundedness assumption. These estimation methods fall into three general categories: (i) estimators based on a model for the outcome variable using conventional regression adjustment; (ii) weighted estimators based on a model for the treatment assignment; and (iii) 'doubly-robust' estimators that model both the treatment assignment and outcome variable within the same framework. We assess the performance of thesemodels using Monte Carlo simulation and demonstrate their application with empirical data. Our results show that (i) when models estimating both the treatment and outcome are correctly specified, all adjustment methods provide similar unbiased estimates; (ii) when the outcome model is misspecified, regression adjustment performs poorly, while all the weighting methods provide unbiased estimates; (iii) when the treatment model is misspecified, methods based solely on modeling the treatment perform poorly, while regression adjustment and the doubly robust models provide unbiased estimates; and (iv) when both the treatment and outcome models are misspecified, all methods perform poorly. Given that researchers will rarely know which of the two models is misspecified, our results support the use of doubly robust estimation. Copyright (C) 2015 John Wiley & Sons, Ltd.
机构:
Univ Calif Irvine, Dept Stat, Irvine, CA 92697 USAUniv Calif Irvine, Dept Stat, Irvine, CA 92697 USA
Zawadzki, Roy S. D.
Grill, Joshua D. L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Irvine, Dept Psychiat & Human Behav, Irvine, CA USA
Univ Calif Irvine, Dept Neurobiol & Behav, Irvine, CA USAUniv Calif Irvine, Dept Stat, Irvine, CA 92697 USA
Grill, Joshua D. L.
Gillen, Daniel L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Irvine, Dept Stat, Irvine, CA 92697 USAUniv Calif Irvine, Dept Stat, Irvine, CA 92697 USA
机构:
Beijing Technol & Business Univ, Sch Math & Stat, Beijing, Peoples R ChinaBeijing Technol & Business Univ, Sch Math & Stat, Beijing, Peoples R China
Luo, Shanshan
Zhang, Yechi
论文数: 0引用数: 0
h-index: 0
机构:
Renmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
Renmin Univ China, Sch Stat, Beijing, Peoples R ChinaBeijing Technol & Business Univ, Sch Math & Stat, Beijing, Peoples R China
Zhang, Yechi
Li, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Renmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
Renmin Univ China, Sch Stat, Beijing, Peoples R ChinaBeijing Technol & Business Univ, Sch Math & Stat, Beijing, Peoples R China
Li, Wei
Geng, Zhi
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Technol & Business Univ, Sch Math & Stat, Beijing, Peoples R ChinaBeijing Technol & Business Univ, Sch Math & Stat, Beijing, Peoples R China
机构:
Skidmore Coll, Dept Math, Stat, 815 N Broadway, Saratoga Springs, NY 12866 USASkidmore Coll, Dept Math, Stat, 815 N Broadway, Saratoga Springs, NY 12866 USA
Lopez, Michael J.
Gutman, Roee
论文数: 0引用数: 0
h-index: 0
机构:
Brown Univ, Dept Biostat, Biostat, 121 S Main St, Providence, RI 02912 USASkidmore Coll, Dept Math, Stat, 815 N Broadway, Saratoga Springs, NY 12866 USA
机构:
Simmons Univ, Dept Math & Stat, 300 Fenway, Boston, MA 02115 USASimmons Univ, Dept Math & Stat, 300 Fenway, Boston, MA 02115 USA
Scotina, Anthony D.
Beaudoin, Francesca L.
论文数: 0引用数: 0
h-index: 0
机构:
Brown Univ, Dept Hlth Serv Policy & Practice, Providence, RI 02912 USA
Brown Univ, Dept Emergency Med, Providence, RI 02912 USASimmons Univ, Dept Math & Stat, 300 Fenway, Boston, MA 02115 USA
Beaudoin, Francesca L.
Gutman, Roee
论文数: 0引用数: 0
h-index: 0
机构:
Brown Univ, Dept Biostat, Providence, RI 02912 USASimmons Univ, Dept Math & Stat, 300 Fenway, Boston, MA 02115 USA
机构:
Univ Chicago, Booth Sch Business, 5807 South Woodlawn Ave, Chicago, IL 60637 USAUniv Chicago, Booth Sch Business, 5807 South Woodlawn Ave, Chicago, IL 60637 USA
Toulis, P.
Volfovsky, A.
论文数: 0引用数: 0
h-index: 0
机构:
Duke Univ, Dept Stat Sci, Box 90251, Durham, NC 27708 USAUniv Chicago, Booth Sch Business, 5807 South Woodlawn Ave, Chicago, IL 60637 USA
Volfovsky, A.
Airoldi, E. M.
论文数: 0引用数: 0
h-index: 0
机构:
Temple Univ, Fox Sch Business, Dept Stat Operat & Data Sci, 1801 Liacouras Walk, Philadelphia, PA 19122 USAUniv Chicago, Booth Sch Business, 5807 South Woodlawn Ave, Chicago, IL 60637 USA