Two-dimensional Chern semimetals on the Lieb lattice

被引:33
|
作者
Palumbo, Giandomenico [1 ]
Meichanetzidis, Konstantinos [1 ]
机构
[1] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
来源
PHYSICAL REVIEW B | 2015年 / 92卷 / 23期
基金
英国工程与自然科学研究理事会;
关键词
HALL; PARITY; MODEL;
D O I
10.1103/PhysRevB.92.235106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work we propose a simple model that supports Chern semimetals. These gapless topological phases share several properties with the Chern insulators like a well-defined Chern number associated with each band, topologically protected edge states and topological phase transitions that occur when the bands touch each, with linear dispersion around the contact points. The tight-binding model, defined on the Lieb lattice with intra-unit-cell and suitable nearest-neighbor hopping terms between three different species of spinless fermions, supports a single Dirac-like point. The dispersion relation around this point is fully relativistic and the 3 x 3 matrices in the corresponding effective Hamiltonian satisfy the Duffin-Kemmer-Petiau algebra. We show the robustness of the topologically protected edge states by employing the entanglement spectrum. Moreover, we prove that the Chern number of the lowest band is robust with respect to weak disorder. For its simplicity, our model can be naturally implemented in real physical systems like cold atoms in optical lattices.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Experimental Realization of Two-Dimensional Buckled Lieb Lattice
    Feng, Haifeng
    Liu, Chen
    Zhou, Si
    Gao, Nan
    Gao, Qian
    Zhuang, Jincheng
    Xu, Xun
    Hu, Zhenpeng
    Wang, Jiaou
    Chen, Lan
    Zhao, Jijun
    Dou, Shi Xue
    Du, Yi
    NANO LETTERS, 2020, 20 (04) : 2537 - 2543
  • [2] Spectral and transport properties of the two-dimensional Lieb lattice
    Nita, M.
    Ostahie, B.
    Aldea, A.
    PHYSICAL REVIEW B, 2013, 87 (12):
  • [3] Disorder effects in the two-dimensional Lieb lattice and its extensions
    Mao, Xiaoyu
    Liu, Jie
    Zhong, Jianxin
    Romer, Rudolf A.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2020, 124
  • [4] Two-dimensional anisotropic non-Hermitian Lieb lattice
    Xie, L. C.
    Wu, H. C.
    Zhang, X. Z.
    Jin, L.
    Song, Z.
    PHYSICAL REVIEW B, 2021, 104 (12)
  • [5] Electronic Lieb lattice signatures embedded in two-dimensional polymers with a square lattice
    Zhang, Yingying
    Zhao, Shuangjie
    Polozij, Miroslav
    Heine, Thomas
    CHEMICAL SCIENCE, 2024, 15 (15) : 5757 - 5763
  • [6] Two-dimensional topological semimetals*
    Feng, Xiaolong
    Zhu, Jiaojiao
    Wu, Weikang
    Yang, Shengyuan A.
    CHINESE PHYSICS B, 2021, 30 (10)
  • [7] Two-dimensional topological semimetals
    冯晓龙
    朱娇娇
    吴维康
    杨声远
    Chinese Physics B, 2021, 30 (10) : 566 - 578
  • [8] Exciton Polaritons in a Two-Dimensional Lieb Lattice with Spin-Orbit Coupling
    Whittaker, C. E.
    Cancellieri, E.
    Walker, P. M.
    Gulevich, D. R.
    Schomerus, H.
    Vaitiekus, D.
    Royall, B.
    Whittaker, D. M.
    Clarke, E.
    Iorsh, I. V.
    Shelykh, I. A.
    Skolnick, M. S.
    Krizhanovskii, D. N.
    PHYSICAL REVIEW LETTERS, 2018, 120 (09)
  • [9] Anomalous plasmons in a two-dimensional Dirac nodal-line Lieb lattice
    Ding, Chao
    Gao, Han
    Geng, Wenhui
    Zhao, Mingwen
    NANOSCALE ADVANCES, 2021, 3 (04): : 1127 - 1135
  • [10] Static and dynamic magnetic properties in two-dimensional Lieb-like lattice
    Wang, Xue-Jiao
    Jiang, Wei
    CHINESE JOURNAL OF PHYSICS, 2022, 80 : 349 - 366