Convolutional neural networks for vibrational spectroscopic data analysis

被引:309
|
作者
Acquarelli, Jacopo [1 ]
van Laarhoven, Twan [1 ]
Gerretzen, Jan [2 ]
Tran, Thanh N. [2 ,3 ]
Buydens, Lutgarde M. C. [2 ]
Marchiori, Elena [1 ]
机构
[1] Radboud Univ Nijmegen, Inst Comp & Informat Sci, NL-6525 ED Nijmegen, Netherlands
[2] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 ED Nijmegen, Netherlands
[3] Merck Sharp & Dohme Ltd, Ctr Math Sci, Oss, Netherlands
关键词
Vibrational spectroscopy; Convolutional neural networks; Preprocessing; MIDINFRARED SPECTROSCOPY; LEAST-SQUARES; TRANSFORM;
D O I
10.1016/j.aca.2016.12.010
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this work we show that convolutional neural networks (CNNs) can be efficiently used to classify vibrational spectroscopic data and identify important spectral regions. CNNs are the current state-of-the-art in image classification and speech recognition and can learn interpretable representations of the data. These characteristics make CNNs a good candidate for reducing the need for preprocessing and for highlighting important spectral regions, both of which are crucial steps in the analysis of vibrational spectroscopic data. Chemometric analysis of vibrational spectroscopic data often relies on preprocessing methods involving baseline correction, scatter correction and noise removal, which are applied to the spectra prior to model building. Preprocessing is a critical step because even in simple problems using 'reasonable' preprocessing methods may decrease the performance of the final model. We develop a new CNN based method and provide an accompanying publicly available software. It is based on a simple CNN architecture with a single convolutional layer (a so-called shallow CNN). Our method outperforms standard classification algorithms used in chemometrics (e.g. PLS) in terms of accuracy when applied to non-preprocessed test data (86% average accuracy compared to the 62% achieved by PLS), and it achieves better performance even on preprocessed test data (96% average accuracy compared to the 89% achieved by PIS). For interpretability purposes, our method includes a procedure for finding important spectral regions, thereby facilitating qualitative interpretation of results. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:22 / 31
页数:10
相关论文
共 50 条
  • [11] Quantum convolutional neural networks for high energy physics data analysis
    Chen, Samuel Yen-Chi
    Wei, Tzu-Chieh
    Zhang, Chao
    Yu, Haiwang
    Yoo, Shinjae
    PHYSICAL REVIEW RESEARCH, 2022, 4 (01):
  • [12] Approximation Analysis of Convolutional Neural Networks
    Bao, Chenglong
    Li, Qianxiao
    Shen, Zuowei
    Tai, Cheng
    Wu, Lei
    Xiang, Xueshuang
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2023, 13 (03) : 524 - 549
  • [13] Convolutional Neural Networks Learning Respiratory data
    Perna, Diego
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 2109 - 2113
  • [14] MisConv: Convolutional Neural Networks for Missing Data
    Likowski, Marcin Przewiez
    Smieja, Marek
    Struski, Lukasz
    Tabor, Jacek
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 2917 - 2926
  • [15] Age Analysis with Convolutional Neural Networks
    Perez-Delgado, Maria-Luisa
    Roman-Gallego, Jesus-Angel
    NEW TRENDS IN DISRUPTIVE TECHNOLOGIES, TECH ETHICS AND ARTIFICIAL INTELLIGENCE, DITTET 2023, 2023, 1452 : 28 - 37
  • [16] Deep convolutional neural networks for data delivery in vehicular networks
    Jiang, Hejun
    Tang, Xiaolan
    Jin, Kai
    Chen, Wenlong
    Pu, Juhua
    NEUROCOMPUTING, 2021, 432 (432) : 216 - 226
  • [17] Convolutional Neural Networks, Big Data and Deep Learning in Automatic Image Analysis
    Vrejoiu, Mihnea Horia
    ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL-REVISTA ROMANA DE INFORMATICA SI AUTOMATICA, 2019, 29 (01): : 91 - 114
  • [18] Big data analysis for brain tumor detection: Deep convolutional neural networks
    Amin, Javeria
    Sharif, Muhammad
    Yasmin, Mussarat
    Fernandes, Steven Lawrence
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 87 : 290 - 297
  • [19] Application of Convolutional Neural Networks for Data Analysis in TAIGA-HiSCORE Experiment
    Kryukov, A. P.
    Vlaskina, A. A.
    Polyakov, S. P.
    Gres, E. O.
    Demichev, A. P.
    Dubenskaya, Yu. Yu.
    Zhurov, D. P.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2023, 78 (SUPPL 1) : S32 - S36
  • [20] Application of Convolutional Neural Networks for Data Analysis in TAIGA-HiSCORE Experiment
    A. P. Kryukov
    A. A. Vlaskina
    S. P. Polyakov
    E. O. Gres
    A. P. Demichev
    Yu. Yu. Dubenskaya
    D. P. Zhurov
    Moscow University Physics Bulletin, 2023, 78 : S32 - S36