Linear and quasilinear parabolic equations in Sobolev space

被引:9
作者
Sharples, JJ [1 ]
机构
[1] Univ Canberra, Sch Math & Stat, Canberra, ACT 2601, Australia
关键词
parabolic equations; a priori estimates; Sobolev space;
D O I
10.1016/j.jde.2004.03.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider linear parabolic equations of second order in a Sobolev space setting. We obtain existence and uniqueness results for such equations on a closed two-dimensional manifold, with minimal assumptions about the regularity of the coefficients of the elliptic operator. In particular, we derive a priori estimates relating the Sobolev regularity of the coefficients of the elliptic operator to that of the solution. The results obtained are used in conjunction with an iteration argument to yield existence results for quasilinear parabolic equations. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:111 / 142
页数:32
相关论文
共 14 条
[1]  
DUATRAY R, 1992, MATH ANAL NUMERICAL, V5, P467
[2]  
EVANS LC, 1998, PARTIAL DIFFERENTIAL, P349
[3]  
Folland GB., 1995, INTRO PARTIAL DIFFER
[4]  
FRIEDMAN A, 1964, PARTIAL DIFFERENTIAL, P270
[5]   GLOBAL EXISTENCE FOR NON-LINEAR WAVE-EQUATIONS [J].
KLAINERMAN, S .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (01) :43-101
[6]   Gradient flow for the Willmore functional [J].
Kuwert, E ;
Schätzle, R .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2002, 10 (02) :307-339
[7]  
Ladyzenskaja O. A., 1968, Linear and Quasi-linear Equation of Parabolic Type
[8]  
LIEBERMAN GM, 1996, 2 ORDER PARABOLIC DI, P99
[9]  
Lions J. L., 1957, ANN I FOURIER, V7, P143
[10]  
POLDEN A, 1996, THESIS U TUBINGEN