Nonparametric distributed learning under general designs

被引:5
作者
Liu, Meimei [1 ,2 ]
Shang, Zuofeng [1 ,2 ]
Cheng, Guang [3 ]
机构
[1] Virginia Tech, Dept Stat, Blacksburg, VA 24061 USA
[2] NJIT, Dept Math Sci, Newark, NJ 07102 USA
[3] Purdue Univ, Dept Stat, W Lafayette, IN 47906 USA
来源
ELECTRONIC JOURNAL OF STATISTICS | 2020年 / 14卷 / 02期
关键词
Computational limit; divide and conquer; kernel ridge regression; minimax optimality; nonparametric testing; MINIMAX-OPTIMAL RATES; REGRESSION; THEOREM;
D O I
10.1214/20-EJS1733
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper focuses on the distributed learning in nonparametric regression framework. With sufficient computational resources, the efficiency of distributed algorithms improves as the number of machines increases. We aim to analyze how the number of machines affects statistical optimality. We establish an upper bound for the number of machines to achieve statistical minimax in two settings: nonparametric estimation and hypothesis testing. Our framework is general compared with existing work. We build a unified frame in distributed inference for various regression problems, including thin-plate splines and additive regression under random design: univariate, multivariate, and diverging-dimensional designs. The main tool to achieve this goal is a tight bound of an empirical process by introducing the Green function for equivalent kernels. Thorough numerical studies back theoretical findings.
引用
收藏
页码:3070 / 3102
页数:33
相关论文
共 31 条
  • [11] Lu J., 2016, ARXIV160106212
  • [12] HIGH-DIMENSIONAL ADDITIVE MODELING
    Meier, Lukas
    van de Geer, Sara
    Buehlmann, Peter
    [J]. ANNALS OF STATISTICS, 2009, 37 (6B) : 3779 - 3821
  • [13] Mendelson S., 2002, Computational Learning Theory. 15th Annual Conference on Computational Learning Theory, COLT 2002. Proceedings (Lecture Notes in Artificial Intelligence Vol.2375), P29
  • [14] Mercer's theorem, feature maps, and smoothing
    Minh, Ha Quang
    Niyogi, Partha
    Yao, Yuan
    [J]. LEARNING THEORY, PROCEEDINGS, 2006, 4005 : 154 - 168
  • [15] Distributed statistical estimation and rates of convergence in normal approximation
    Minsker, Stanislav
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (02): : 5213 - 5252
  • [16] Raskutti G, 2012, J MACH LEARN RES, V13, P389
  • [17] Shang Z., 2017, J MACHINE LEARNING R, V18, P3809
  • [18] Shang ZF, 2019, J MACH LEARN RES, V20
  • [19] LOCAL AND GLOBAL ASYMPTOTIC INFERENCE IN SMOOTHING SPLINE MODELS
    Shang, Zuofeng
    Cheng, Guang
    [J]. ANNALS OF STATISTICS, 2013, 41 (05) : 2608 - 2638
  • [20] Sollich P, 2005, LECT NOTES ARTIF INT, V3635, P211, DOI 10.1007/11559887_13