Using Mendelian randomisation to assess causality in observational studies

被引:90
|
作者
Pagoni, Panagiota [1 ,2 ]
Dimou, Niki L. [3 ]
Murphy, Neil [3 ]
Stergiakouli, Evie [1 ,2 ,4 ]
机构
[1] Univ Bristol, Integrat Epidemiol Unit, MRC, Bristol, Avon, England
[2] Univ Bristol, Populat Hlth Sci, Bristol, Avon, England
[3] Int Agcy Res Canc, F-69372 Lyon, France
[4] Univ Bristol, Sch Oral & Dent Sci, Bristol, Avon, England
关键词
OBESITY; INSTRUMENTS; DEPRESSION; INSIGHTS; BIAS;
D O I
10.1136/ebmental-2019-300085
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Objective Mendelian randomisation (MR) is a technique that aims to assess causal effects of exposures on disease outcomes. The paper aims to present the main assumptions that underlie MR, the statistical methods used to estimate causal effects and how to account for potential violations of the key assumptions. Methods We discuss the key assumptions that should be satisfied in an MR setting. We list the statistical methodologies used in two-sample MR when summary data are available to estimate causal effects (ie, Wald ratio estimator, inverse-variance weighted and maximum likelihood method) and identify/adjust for potential violations of MR assumptions (ie, MR-Egger regression and weighted Median approach). We also present statistical methods and graphical tools used to evaluate the presence of heterogeneity. Results We use as an illustrative example of a published two-sample MR study, investigating the causal association of body mass index with three psychiatric disorders (ie, bipolar disorder, schizophrenia and major depressive disorder). We highlight the importance of assessing the results of all available methods rather than each method alone. We also demonstrate the impact of heterogeneity in the estimation of the causal effects. Conclusions MR is a useful tool to assess causality of risk factors in medical research. Assessment of the key assumptions underlying MR is crucial for a valid interpretation of the results.
引用
收藏
页码:67 / 71
页数:5
相关论文
共 50 条
  • [41] Selection of genetic instruments in Mendelian randomisation studies of sleep traits
    Paz, Valentina
    Dashti, Hassan S.
    Burgess, Stephen
    Garfield, Victoria
    SLEEP MEDICINE, 2023, 112 : 342 - 351
  • [42] Genetic drug target validation using Mendelian randomisation
    Schmidt, Amand F.
    Finan, Chris
    Gordillo-Maranon, Maria
    Asselbergs, Folkert W.
    Freitag, Daniel F.
    Patel, Riyaz S.
    Tyl, Benoit
    Chopade, Sandesh
    Faraway, Rupert
    Zwierzyna, Magdalena
    Hingorani, Aroon D.
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [43] Educational inequality in multimorbidity: causality and causal pathways. A mendelian randomisation study in UK Biobank
    North, Teri-Louise
    Harrison, Sean
    Bishop, Deborah C.
    Wootton, Robyn E.
    Carter, Alice R.
    Richardson, Tom G.
    Payne, Rupert A.
    Salisbury, Chris
    Howe, Laura D.
    BMC PUBLIC HEALTH, 2023, 23 (01)
  • [44] Mendelian randomisation studies of type 2 diabetes: future prospects
    M. S. Sandhu
    S. L. Debenham
    I. Barroso
    R. J. F. Loos
    Diabetologia, 2008, 51 : 211 - 213
  • [45] On the choice of parameterisation and priors for the Bayesian analyses of Mendelian randomisation studies
    Jones, E. M.
    Thompson, J. R.
    Didelez, V.
    Sheehan, N. A.
    STATISTICS IN MEDICINE, 2012, 31 (14) : 1483 - 1501
  • [46] TESTING CAUSALITY IN THE ASSOCIATION OF PLASMA CORTISOL WITH RISK OF CORONARY HEART DISEASE: A MENDELIAN RANDOMISATION STUDY
    Crawford, A. A.
    Timpson, N. J.
    Smith, G. Davey
    Walker, B. R.
    HEART, 2015, 101 : A6 - A7
  • [47] Genetic drug target validation using Mendelian randomisation
    Amand F. Schmidt
    Chris Finan
    Maria Gordillo-Marañón
    Folkert W. Asselbergs
    Daniel F. Freitag
    Riyaz S. Patel
    Benoît Tyl
    Sandesh Chopade
    Rupert Faraway
    Magdalena Zwierzyna
    Aroon D. Hingorani
    Nature Communications, 11
  • [48] Health effects of high serum calcium levels: Updated phenome-wide Mendelian randomisation investigation and review of Mendelian randomisation studies
    Yuan, Shuai
    Yu, Lili
    Gou, Wanglong
    Wang, Lijuan
    Sun, Jing
    Li, Doudou
    Lu, Ying
    Cai, Xiaxia
    Yu, Huanling
    Yuan, Changzheng
    Zheng, Ju-Sheng
    Larsson, Susanna C.
    Theodoratou, Evropi
    Li, Xue
    EBIOMEDICINE, 2022, 76
  • [49] Obesity Increases Heart Failure Incidence and Mortality:Observational and Mendelian Randomisation Studies Totalling Over 1 Million Individuals
    Benn, Marianne
    Marott, Sarah C.
    Tybjaerg-hansen, Anne
    Nordestgaard, Borge G.
    CIRCULATION, 2021, 144
  • [50] Associations between circulating proteins and cardiometabolic diseases: a systematic review and meta-analysis of observational and Mendelian randomisation studies
    Wu, Ting
    Ke, Yalei
    Li, Yingtao
    Wu, Zhiyu
    Lv, Jun
    Yu, Canqing
    Sun, Dianjianyi
    Yao, Pang
    Kartsonaki, Christiana
    Chen, Zhengming
    Li, Liming
    Pang, Yuanjie
    HEART, 2024,