Using Mendelian randomisation to assess causality in observational studies

被引:90
|
作者
Pagoni, Panagiota [1 ,2 ]
Dimou, Niki L. [3 ]
Murphy, Neil [3 ]
Stergiakouli, Evie [1 ,2 ,4 ]
机构
[1] Univ Bristol, Integrat Epidemiol Unit, MRC, Bristol, Avon, England
[2] Univ Bristol, Populat Hlth Sci, Bristol, Avon, England
[3] Int Agcy Res Canc, F-69372 Lyon, France
[4] Univ Bristol, Sch Oral & Dent Sci, Bristol, Avon, England
关键词
OBESITY; INSTRUMENTS; DEPRESSION; INSIGHTS; BIAS;
D O I
10.1136/ebmental-2019-300085
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Objective Mendelian randomisation (MR) is a technique that aims to assess causal effects of exposures on disease outcomes. The paper aims to present the main assumptions that underlie MR, the statistical methods used to estimate causal effects and how to account for potential violations of the key assumptions. Methods We discuss the key assumptions that should be satisfied in an MR setting. We list the statistical methodologies used in two-sample MR when summary data are available to estimate causal effects (ie, Wald ratio estimator, inverse-variance weighted and maximum likelihood method) and identify/adjust for potential violations of MR assumptions (ie, MR-Egger regression and weighted Median approach). We also present statistical methods and graphical tools used to evaluate the presence of heterogeneity. Results We use as an illustrative example of a published two-sample MR study, investigating the causal association of body mass index with three psychiatric disorders (ie, bipolar disorder, schizophrenia and major depressive disorder). We highlight the importance of assessing the results of all available methods rather than each method alone. We also demonstrate the impact of heterogeneity in the estimation of the causal effects. Conclusions MR is a useful tool to assess causality of risk factors in medical research. Assessment of the key assumptions underlying MR is crucial for a valid interpretation of the results.
引用
收藏
页码:67 / 71
页数:5
相关论文
共 50 条
  • [21] A Semi-Quantitative Method to Assess The Likelihood of Causality in Observational Studies
    Rosillon, Dominique
    Gvozdenovic, Emilia
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2024, 33 : 600 - 600
  • [22] Causal inference using Mendelian randomisation
    Sheehan, Nuala
    Didelez, Vanessa
    Meng, Sha
    ANNALS OF HUMAN GENETICS, 2009, 73 : 663 - 663
  • [23] Type-2 diabetes and risk of dementia: observational and Mendelian randomisation studies in 1 million individuals
    Thomassen, Jesper Qvist
    Tolstrup, Janne Schurmann
    Benn, Marianne
    Frikke-Schmidt, Ruth
    EPIDEMIOLOGY AND PSYCHIATRIC SCIENCES, 2020, 29
  • [24] On the use of Mendelian randomization to infer causality in observational epidemiology
    Bochud, Murielle
    EUROPEAN HEART JOURNAL, 2008, 29 (20) : 2456 - 2457
  • [25] Asthma and incident coronary heart disease: an observational and Mendelian randomisation study
    Valencia-Hernandez, Carlos A.
    Del Greco, Fabiola M.
    Sundaram, Varun
    Portas, Laura
    Minelli, Cosetta
    Bloom, Chloe I.
    EUROPEAN RESPIRATORY JOURNAL, 2023, 62 (05)
  • [26] Physical activity and COVID-19: an observational and Mendelian randomisation study
    Zhang, Xiaomeng
    Li, Xue
    Sun, Ziwen
    He, Yazhou
    Xu, Wei
    Campbell, Harry
    Dunlop, Malcolm G.
    Timofeeva, Maria
    Theodoratou, Evropi
    JOURNAL OF GLOBAL HEALTH, 2020, 10 (02)
  • [27] Effects of adiposity on the human plasma proteome: observational and Mendelian randomisation estimates
    Goudswaard, Lucy J.
    Bell, Joshua A.
    Hughes, David A.
    Corbin, Laura J.
    Walter, Klaudia
    Davey Smith, George
    Soranzo, Nicole
    Danesh, John
    Di Angelantonio, Emanuele
    Ouwehand, Willem H.
    Watkins, Nicholas A.
    Roberts, David J.
    Butterworth, Adam S.
    Hers, Ingeborg
    Timpson, Nicholas J.
    INTERNATIONAL JOURNAL OF OBESITY, 2021, 45 (10) : 2221 - 2229
  • [28] Effects of adiposity on the human plasma proteome: observational and Mendelian randomisation estimates
    Lucy J. Goudswaard
    Joshua A. Bell
    David A. Hughes
    Laura J. Corbin
    Klaudia Walter
    George Davey Smith
    Nicole Soranzo
    John Danesh
    Emanuele Di Angelantonio
    Willem H. Ouwehand
    Nicholas A. Watkins
    David J. Roberts
    Adam S. Butterworth
    Ingeborg Hers
    Nicholas J. Timpson
    International Journal of Obesity, 2021, 45 : 2221 - 2229
  • [29] Mendelian randomisation studies of Attention Deficit Hyperactivity Disorder
    Riglin, Lucy
    Stergiakouli, Evie
    JCPP ADVANCES, 2022, 2 (04):
  • [30] Assessing the Causality between Blood Pressure and Retinal Vascular Caliber through Mendelian Randomisation
    Ling-Jun Li
    Jiemin Liao
    Carol Yim-Lui Cheung
    M. Kamran Ikram
    Tai E. Shyong
    Tien-Yin Wong
    Ching-Yu Cheng
    Scientific Reports, 6