Fault Diagnosis of SOFC Stack Based on Neural Network Algorithm

被引:9
作者
Xue, Tao [1 ]
Wu, Xiaolong [1 ]
Xu, Yuanwu [1 ]
Jing, Suwen [1 ]
Li, Zehua [1 ]
Jiang, Jianhua [1 ]
Deng, Zhonghua [1 ]
Fu, Xiaowei [2 ]
Xi, Li [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Automat, Educ Minist Image Proc & Intelligent Control, Key Lab, Wuhan 430074, Hubei, Peoples R China
[2] Wuhan Univ Sci & Technol, Coll Comp Sci & Technol, Hubei Prov Key Lab Intelligent Informat Proc & Re, Wuhan 430065, Hubei, Peoples R China
来源
INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS | 2019年 / 158卷
基金
中国国家自然科学基金;
关键词
SOFC; fault diagnosis; neural network;
D O I
10.1016/j.egypro.2019.01.423
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
To realize the commercialization of SOFC, it must be ensured that it can work efficiently and stably. SOFC fault diagnosis becomes an essential part of the research. Due to the strong coupling of faults in the stack, this paper uses neural network algorithm to detect and diagnose faults. The simulation results verify that through the diagnosis of the test sample, the recognition rate of the test sample by the network is found to be 95%, which explains the neural network fault diagnosis model established in this paper on identifying the normal working state of the stack, the electrode stacking of the stack, and the gas leakage fault of the stack has good effectiveness and accuracy. (C) 2019 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:1798 / 1803
页数:6
相关论文
共 9 条
[1]  
Arsie I., 2010, P ASME 2010 8 INT FU
[2]   Analysis of Leakages in a Solid Oxide Fuel Cell Stack in a System Environment [J].
Halinen, M. ;
Pennanen, J. .
Fuel Cells, 2015, 15 (02) :434-444
[3]   Experimental study of SOFC system heat-up without safety gases [J].
Halinen, M. ;
Thomann, O. ;
Kiviaho, J. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (01) :552-561
[4]   Performance of a 10 kW SOFC Demonstration Unit [J].
Halinen, M. ;
Rautanen, M. ;
Saarinen, J. ;
Pennanen, J. ;
Pohjoranta, A. ;
Kiviaho, J. ;
Pastula, M. ;
Nuttall, B. ;
Rankin, C. ;
Borglum, B. .
SOLID OXIDE FUEL CELLS 12 (SOFC XII), 2011, 35 (01) :113-120
[5]   Methane reforming kinetics within a Ni-YSZ SOFC anode support [J].
Hecht, ES ;
Gupta, GK ;
Zhu, HY ;
Dean, AM ;
Kee, RJ ;
Maier, L ;
Deutschmann, O .
APPLIED CATALYSIS A-GENERAL, 2005, 295 (01) :40-51
[6]   Model-based development of a fault signature matrix to improve solid oxide fuel cell systems on-site diagnosis [J].
Polverino, Pierpaolo ;
Pianese, Cesare ;
Sorrentino, Marco ;
Marra, Dario .
JOURNAL OF POWER SOURCES, 2015, 280 :320-338
[7]   Application of Fault Tree Analysis to Fuel Cell diagnosis [J].
Steiner, N. Yousfi ;
Hissel, D. ;
Mocoteguy, P. ;
Candusso, D. ;
Marra, D. ;
Pianese, C. ;
Sorrentino, M. .
FUEL CELLS, 2012, 12 (02) :302-309
[8]  
Wu Xiaojuan, 2016, HYDROGEN ENERGY, VXXX, P1
[9]   Fuel flexibility study of an integrated 25 kW SOFC reformer system [J].
Yi, YF ;
Rao, AD ;
Brouwer, J ;
Samuelsen, GS .
JOURNAL OF POWER SOURCES, 2005, 144 (01) :67-76