共 29 条
Evaluation of Blue and Far-Red Dye Pairs in Single-Molecule Forster Resonance Energy Transfer Experiments
被引:18
|作者:
Vandenberk, Niels
[1
]
Barth, Anders
[2
,3
]
Borrenberghs, Doortje
[1
]
Hofkens, Johan
[1
]
Hendrix, Jelle
[1
,4
,5
]
机构:
[1] Katholieke Univ Leuven, Dept Chem, Div Mol Imaging & Photon, Lab Photochem & Spect, Celestijnenlaan 200F, B-3001 Leuven, Belgium
[2] Ludwig Maximilians Univ Munchen, Nanosyst Initiat Munich, Munich Ctr Integrated Prot Sci, Dept Chem,Phys Chem, D-80539 Munich, Germany
[3] Ludwig Maximilians Univ Munchen, Ctr Nanosci, D-80539 Munich, Germany
[4] Hasselt Univ, Adv Opt Microscopy Ctr, Dynam Bioimaging Lab, Agoralaan BIOMED C, B-3590 Diepenbeek, Belgium
[5] Hasselt Univ, Biomed Res Inst, Agoralaan BIOMED C, B-3590 Diepenbeek, Belgium
关键词:
FLUORESCENCE CORRELATION SPECTROSCOPY;
FRET MEASUREMENTS;
DYNAMICS;
IDENTIFICATION;
EXCITATION;
LIFETIME;
SYSTEM;
CY5;
DISTRIBUTIONS;
FLUCTUATIONS;
D O I:
10.1021/acs.jpcb.8b00108
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Forster resonance energy transfer (FRET) is a powerful tool to probe molecular interactions, activity, analytes, forces, and structure. Single-molecule (sm)FRET additionally allows real-time quantifications of conformation and conformational dynamics. smFRET robustness critically depends on the employed dyes, yet a systematic comparison of different dye pairs is lacking. Here, we evaluated blue (Atto488 and Alexa488) and far-red (Atto647N, Alexa647, StarRed, and Atto655) dyes using confocal smFRET spectroscopy on freely diffusing double-stranded (ds)DNA molecules. Via ensemble analyses (correlation, lifetime, and anisotropy) of single labeled dsDNA, we find that Alexa488 and Atto647N are overall the better dyes, although the latter interacts with DNA. Via burstwise analyses of double-labeled dsDNA with interdye distances spanning the complete FRET-sensitive range (3.5-9 nm), we show that none of the dye pairs stands out: distance accuracies were generally <1 nm and precision was similar to 0.5 nm. Finally, excitation of photoblinking dyes such as Alexa647 influences their fluorescence quantum yield, which has to be taken into account in distance measurements and leads to FRET dynamics. Although dye performance might differ in experiments on immobilized molecules, our combined ensemble and single-molecule approach is a robust characterization tool for all types of smFRET experiments. This is especially important when smFRET is used for atomic-scale distance measurements.
引用
收藏
页码:4249 / 4266
页数:18
相关论文