The Effect of Geometry on the Efficiency and Hemolysis of Centrifugal Implantable Blood Pumps

被引:27
作者
Mozafari, Sahand [1 ]
Rezaienia, Mohamad A. [1 ]
Paul, Gordon M. [1 ]
Rothman, Martin T. [2 ]
Wen, Pihua [1 ]
Korakianitis, Theodosios [3 ]
机构
[1] Queen Mary Univ London, Sch Engn & Mat Sci, London, England
[2] London Chest Hosp, Barts & London NHS Trust, Dept Cardiol, London E2 9JX, England
[3] St Louis Univ, Pk Coll Engn Aviat & Technol, St Louis, MO 63103 USA
基金
美国国家卫生研究院;
关键词
pump efficiency; blood pump; congestive heart failure; hemocompatibility; hemolysis; DESIGN; OPTIMIZATION; SIMULATION; SHEARING; DEVICES; SERIES;
D O I
10.1097/MAT.0000000000000457
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The application of centrifugal pumps as heart assist devices imposes design limitations on the impeller geometry. Geometry and operating parameters will affect the performance and the hemocompatibility of the device. Among all the parameters affecting the hemocompatibility, pressure, rotational speed, blade numbers, angle, and width have significant impact on the blood trauma. These parameters directly (pressure, speed) and indirectly (geometry) affect the efficiency of the pump as well. This study describes the experimental investigation on geometric parameters and their effect on the performance of small centrifugal pumps suitable for Mechanical Circulatory Support (MCS) devices. Experimental and numerical techniques were implemented to analyze the performance of 15 centrifugal impellers with different characteristics. The effect of each parameter on the pump performance and hemolysis was studied by calculating the normalized index of hemolysis (NIH) and the shear stress induced in each pump. The results show five and six blades, 15-35 degrees outlet angle, and the lowest outlet width that meets the required pressure rise are optimum values for an efficient hemocompatible pump.
引用
收藏
页码:53 / 59
页数:7
相关论文
共 23 条
[1]   Hemolysis estimation in a centrifugal blood pump using a tensor-based measure [J].
Arora, Dhruv ;
Behr, Marek ;
Pasquali, Matteo .
ARTIFICIAL ORGANS, 2006, 30 (07) :539-547
[2]   Evaluation of hydraulic radial forces on the impeller by the volute in a centrifugal rotary blood pump [J].
Boehning F. ;
Timms D.L. ;
Amaral F. ;
Oliveira L. ;
Graefe R. ;
Hsu P.-L. ;
Schmitz-Rode T. ;
Steinseifer U. .
Artificial Organs, 2011, 35 (08) :818-825
[3]   The CentriMag Centrifugal Blood Pump as a Benchmark for In Vitro Testing of Hemocompatibility in Implantable Ventricular Assist Devices [J].
Chan, Chris H. H. ;
Pieper, Ina Laura ;
Hambly, Rebecca ;
Radley, Gemma ;
Jones, Alyssa ;
Friedmann, Yasmin ;
Hawkins, Karl M. ;
Westaby, Stephen ;
Foster, Graham ;
Thornton, Catherine A. .
ARTIFICIAL ORGANS, 2015, 39 (02) :93-101
[4]  
Cordier O, 1953, BRENNSTOFF WARME KRA, V5
[5]   A Quantitative Comparison of Mechanical Blood Damage Parameters in Rotary Ventricular Assist Devices: Shear Stress, Exposure Time and Hemolysis Index [J].
Fraser, Katharine H. ;
Zhang, Tao ;
Taskin, M. Ertan ;
Griffith, Bartley P. ;
Wu, Zhongjun J. .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2012, 134 (08)
[6]   ESTIMATION OF SHEAR STRESS-RELATED BLOOD DAMAGE IN HEART-VALVE PROSTHESES - INVITRO COMPARISON OF 25 AORTIC VALVES [J].
GIERSIEPEN, M ;
WURZINGER, LJ ;
OPITZ, R ;
REUL, H .
INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS, 1990, 13 (05) :300-306
[7]   Aerodynamic performance effects of leading-edge geometry in gas-turbine blades [J].
Hamakhan, I. A. ;
Korakianitis, T. .
APPLIED ENERGY, 2010, 87 (05) :1591-1601
[8]  
HEUSER G, 1980, BIORHEOLOGY, V17, P17
[9]   Aerodynamic Improvements of Wind-Turbine Airfoil Geometries With the Prescribed Surface Curvature Distribution Blade Design (CIRCLE) Method [J].
Korakianitis, T. ;
Rezaienia, M. A. ;
Hamakhan, I. A. ;
Avital, E. J. ;
Williams, J. J. R. .
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2012, 134 (08)
[10]   Design of high-efficiency turbomachinery blades for energy conversion devices with the three-dimensional prescribed surface curvature distribution blade design (CIRCLE) method [J].
Korakianitis, T. ;
Hamakhan, I. A. ;
Rezaienia, M. A. ;
Wheeler, A. P. S. ;
Avital, E. J. ;
Williams, J. J. R. .
APPLIED ENERGY, 2012, 89 (01) :215-227