Rapid Synthesis of Silver Nanoparticles by Microwave-Polyol Method with the Assistance of Latex Copolymer

被引:15
作者
Ider, M. [1 ,2 ,5 ]
Abderrafi, K. [1 ,3 ]
Eddahbi, A. [1 ,4 ]
Ouaskit, S. [1 ,2 ]
Kassiba, A. [5 ]
机构
[1] Univ Hassan II Casablanca, LPMC, Casablanca, Morocco
[2] Univ Hassan II Casablanca, Fac Sci Ben MSik, Bp 7955 Sidi Othman, Casablanca, Morocco
[3] Int Iberian Nanotechnol Lab, Ave Mestre Jose Veiga S-N, P-4715330 Braga, Portugal
[4] LMCM, Casablanca, Morocco
[5] Univ Maine, CNRS, UMR 6283, Dept Phys,Inst Mol & Mat Le Mans, Ave Olivier Messiaen, F-72085 Le Mans 9, France
关键词
Silver nitrate (AgNO3); Latex copolymer; Microwave irradiation; Silver nanoparticles; Surface plasmon resonance (SPR); COLLOIDAL SILVER; REDUCING AGENT; OPTICAL-PROPERTIES; AG NANOPARTICLES; AQUEOUS-SOLUTION; METAL-CLUSTERS; POLYMER; POLYVINYLPYRROLIDONE; NANOSTRUCTURES; PARTICLES;
D O I
10.1007/s10876-016-1096-6
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Highly stable and monodispersed silver nanoparticles with uniform morphology have been successfully prepared by microwave (MW) irradiation within a few seconds from the mixture of silver nitrate, ethanol and latex copolymer. The aqueous emulsion of latex copolymer acts as both reducing and stabilizing agent. To the best of our knowledge, it was the first time that the effect of MW irradiation time and latex concentration on the silver nanoparticle preparation and properties was analyzed. The formation of silver nanoparticles was confirmed by Ultraviolet-visible spectroscopy and transmission electron microscopy (TEM). The UV-Vis spectra are marked by the characteristic surface plasmon absorption band in the range 410-420 nm. From TEM images, silver nanoparticles were observed to be spherical with sizes ranging from 4 to 10 nm. Electron diffraction patterns on selected area, indicated that the silver nanoparticles are crystalline with face centered cubic structure.
引用
收藏
页码:1025 / 1040
页数:16
相关论文
共 67 条
[1]   Scalable heterogeneous synthesis of metallic nanoparticles and aggregates with polyvinyl alcohol [J].
Abargues, Rafael ;
Gradess, Rachid ;
Canet-Ferrer, Josep ;
Abderrafi, Kamal ;
Valdes, Jose Luis. ;
Martinez-Pastor, Juan .
NEW JOURNAL OF CHEMISTRY, 2009, 33 (04) :913-917
[2]   Microwave assisted synthesis and UV-Vis spectroscopic studies of silver nanoparticles synthesized using vanillin as a reducing agent [J].
Aswathy, B. ;
Avadhani, G. S. ;
Sumithra, I. S. ;
Suji, S. ;
Sony, G. .
JOURNAL OF MOLECULAR LIQUIDS, 2011, 159 (02) :165-169
[3]   Microwave-Assisted Synthesis of Colloidal Inorganic Nanocrystals [J].
Baghbanzadeh, Mostafa ;
Carbone, Luigi ;
Cozzoli, P. Davide ;
Kappe, C. Oliver .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (48) :11312-11359
[4]   Single-mode microwave synthesis in organic materials chemistry [J].
Barlow, S ;
Marder, SR .
ADVANCED FUNCTIONAL MATERIALS, 2003, 13 (07) :517-+
[5]   THE QUANTUM-MECHANICS OF LARGER SEMICONDUCTOR CLUSTERS (QUANTUM DOTS) [J].
BAWENDI, MG ;
STEIGERWALD, ML ;
BRUS, LE .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1990, 41 :477-496
[6]  
Bogdal D., 2007, MICROWAVE ENHANCED P
[7]   Microwave enhanced synthesis [J].
Caddick, Stephen ;
Fitzmaurice, Richard .
TETRAHEDRON, 2009, 65 (17) :3325-3355
[8]   Biosynthesis of gold nanowires using sugar beet pulp [J].
Castro, Laura ;
Luisa Blazquez, M. ;
Munoz, Jesus A. ;
Gonzalez, Felisa ;
Garcia-Balboa, Camino ;
Ballester, Antonio .
PROCESS BIOCHEMISTRY, 2011, 46 (05) :1076-1082
[9]   Microwave energy: a versatile tool for the biosciences [J].
Collins, Jonathan M. ;
Leadbeater, Nicholas E. .
ORGANIC & BIOMOLECULAR CHEMISTRY, 2007, 5 (08) :1141-1150
[10]   Functional nanoscale electronic devices assembled using silicon nanowire building blocks [J].
Cui, Y ;
Lieber, CM .
SCIENCE, 2001, 291 (5505) :851-853