M;
Mei;
Convergence rate;
hyperbolic system of balance laws;
partial dissipation;
parabolic system;
stream function;
STRONG RELAXATION LIMIT;
CONSERVATION-LAWS;
GLOBAL EXISTENCE;
SINGULAR PERTURBATIONS;
EULER;
EQUATIONS;
ENTROPY;
D O I:
10.1080/00036811.2019.1634258
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
It is proved recently that partially dissipative hyperbolic systems converge globally-in-time to parabolic systems in a slow time scaling, when initial data are smooth and sufficiently close to constant equilibrium states. Based on this result, we establish error estimates between the smooth solutions of the hyperbolic systems of balance laws and those of the parabolic limit systems in one space dimension. The proof of the error estimates uses a stream function technique together with energy estimates. As applications of the results, we give five examples arising from physical models.
机构:
INRIA Sophia Antipolis Mediterranee Res Ctr, Team COFFEE, F-06108 Nice, France
Lab JA Dieudonne UMR 7351 CNRS, F-06108 Nice, France
Univ Nice Sophia Antipolis, F-06108 Nice, FranceINRIA Sophia Antipolis Mediterranee Res Ctr, Team COFFEE, F-06108 Nice, France
Goudon, Thierry
Lin, Chunjin
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
Hohai Univ, Coll Sci, Dept Math, Nanjing 210098, Jiangsu, Peoples R ChinaINRIA Sophia Antipolis Mediterranee Res Ctr, Team COFFEE, F-06108 Nice, France
机构:
INRIA Sophia Antipolis Mediterranee Res Ctr, Team COFFEE, F-06108 Nice, France
Lab JA Dieudonne UMR 7351 CNRS, F-06108 Nice, France
Univ Nice Sophia Antipolis, F-06108 Nice, FranceINRIA Sophia Antipolis Mediterranee Res Ctr, Team COFFEE, F-06108 Nice, France
Goudon, Thierry
Lin, Chunjin
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
Hohai Univ, Coll Sci, Dept Math, Nanjing 210098, Jiangsu, Peoples R ChinaINRIA Sophia Antipolis Mediterranee Res Ctr, Team COFFEE, F-06108 Nice, France