Homoclinic orbits and chaos in a multimode laser

被引:2
作者
Tang, DY [1 ]
Heckenberg, NR [1 ]
机构
[1] UNIV QUEENSLAND, DEPT PHYS, BRISBANE, QLD 4072, AUSTRALIA
关键词
D O I
10.1364/JOSAB.14.002930
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show experimentally that under certain conditions the chaotic intensity dynamics of an optically pumped NH3 bidirectional ring laser could be well described in terms of Shil'nikov homoclinic orbits and chaos. We found that the mechanism that resulted in this kind of dynamics of the laser is the competition between effects caused by the mode interaction between the forward and the backward modes of the laser and by the intrinsic single-mode dynamics of the interacting modes. (C) 1997 Optical Society of America.
引用
收藏
页码:2930 / 2935
页数:6
相关论文
共 50 条
  • [41] Synchronization of homoclinic chaos
    Allaria, E
    Arecchi, FT
    Di Garbo, A
    Meucci, R
    PHYSICAL REVIEW LETTERS, 2001, 86 (05) : 791 - 794
  • [42] BIFURCATION OF DEGENERATE HOMOCLINIC ORBITS
    Zeng Weiyao(Hunan Light industry College
    Annals of Applied Mathematics, 1996, (03) : 353 - 361
  • [43] Homoclinic orbits to parabolic points
    Casasayas, Josefina
    Fontich, Ernest
    Nunes, Ana
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1997, 4 (02): : 201 - 216
  • [44] Conventional multipliers for homoclinic orbits
    Afraimovich, V
    Liu, WS
    Young, T
    NONLINEARITY, 1996, 9 (01) : 115 - 136
  • [45] Homoclinic orbits and chaos in discretized perturbed NLS systems: Part II. Symbolic dynamics
    Y. Li
    S. Wiggins
    Journal of Nonlinear Science, 1997, 7 : 315 - 370
  • [46] Chaos in a multimode solid-state laser system
    Bracikowski, C.
    Roy, Rajarshi
    CHAOS, 1991, 1 (01) : 49 - 64
  • [47] Infinity of minimal homoclinic orbits
    Zhou, Min
    NONLINEARITY, 2011, 24 (03) : 931 - 939
  • [48] HOMOCLINIC ORBITS ON COMPACT MANIFOLDS
    BENCI, V
    GIANNONI, F
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 157 (02) : 568 - 576
  • [49] Homoclinic Orbits and Lagrangian Embeddings
    Lisi, Samuel T.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
  • [50] On the Homoclinic Orbits of the Lu System
    Alvarez-Ramirez, M.
    Garcia-Saldana, J. D.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (05):