Silicon buried gratings for dielectric laser electron accelerators

被引:28
作者
Chang, Chia-Ming [1 ,2 ]
Solgaard, Olav [2 ]
机构
[1] Alcatel Lucent, Bell Labs, Holmdel, NJ 07733 USA
[2] Stanford Univ, EL Ginzton Lab, Stanford, CA 94305 USA
关键词
MIRROR;
D O I
10.1063/1.4875957
中图分类号
O59 [应用物理学];
学科分类号
摘要
This paper describes design and simulations of dielectric laser electron accelerators that achieve Gigavolt-per-meter (GV/m) accelerating gradients and wide electron channels(>1 mu m). The accelerator design is based on a silicon buried grating structure that enables flexible phase synchronization, large electron channel fields, and low standing-wave ratio in the material. This design increases the accelerating gradients to more than double those of reported quartz grating accelerators, thereby reducing the input laser fluence by 60% for the same accelerating gradient. With a 100 fs pulsed laser, our silicon buried gratings can achieve a maximum gradient of 1.1 GV/m, indicating that these accelerators have potential for numerous electron-accelerator applications. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 12 条
[1]   Laser-Based Acceleration of Nonrelativistic Electrons at a Dielectric Structure [J].
Breuer, John ;
Hommelhoff, Peter .
PHYSICAL REVIEW LETTERS, 2013, 111 (13)
[2]   Photonic band gap fiber accelerator [J].
Lin, XE .
PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2001, 4 (05) :1-7
[3]   Angular and polarization properties of a photonic crystal slab mirror [J].
Lousse, V ;
Suh, W ;
Kilic, O ;
Kim, S ;
Solgaard, O ;
Fan, SH .
OPTICS EXPRESS, 2004, 12 (08) :1575-1582
[4]   Ultrabroadband mirror using low-index cladded subwavelength grating [J].
Mateus, CFR ;
Huang, MCY ;
Deng, YF ;
Neureuther, AR ;
Chang-Hasnain, CJ .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (02) :518-520
[5]  
Mizrahi A, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.016505
[6]   Transmission and radiation of an accelerating mode in a photonic band-gap fiber [J].
Ng, C. -K. ;
England, R. J. ;
Lee, L. -Q. ;
Noble, R. ;
Rawat, V. ;
Spencer, J. .
PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2010, 13 (12)
[7]   Demonstration of electron acceleration in a laser-driven dielectric microstructure [J].
Peralta, E. A. ;
Soong, K. ;
England, R. J. ;
Colby, E. R. ;
Wu, Z. ;
Montazeri, B. ;
McGuinness, C. ;
McNeur, J. ;
Leedle, K. J. ;
Walz, D. ;
Sozer, E. B. ;
Cowan, B. ;
Schwartz, B. ;
Travish, G. ;
Byer, R. L. .
NATURE, 2013, 503 (7474) :91-+
[8]   Proposed few-optical cycle laser-driven particle accelerator structure [J].
Plettner, T. ;
Lu, P. P. ;
Byer, R. L. .
PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2006, 9 (11)
[9]  
Rudy C.W., 2012, Lasers, Sources, and Related Photonic Devices
[10]   PROPOSAL FOR AN ELECTRON ACCELERATOR USING AN OPTICAL MASER [J].
SHIMODA, K .
APPLIED OPTICS, 1962, 1 (01) :33-35