Vibrational spectroscopy in the electron microscope

被引:485
作者
Krivanek, Ondrej L. [1 ,2 ]
Lovejoy, Tracy C. [1 ]
Dellby, Niklas [1 ]
Aoki, Toshihiro [3 ]
Carpenter, R. W. [4 ]
Rez, Peter [2 ]
Soignard, Emmanuel [3 ,4 ]
Zhu, Jiangtao [3 ]
Batson, Philip E. [5 ,6 ,7 ]
Lagos, Maureen J. [5 ,6 ,7 ]
Egerton, Ray F. [8 ]
Crozier, Peter A. [9 ]
机构
[1] Nion Co, Kirkland, WA 98033 USA
[2] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA
[3] Arizona State Univ, LeRoy Eyring Ctr Solid State Sci, Tempe, AZ 85287 USA
[4] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA
[5] Rutgers State Univ, Inst Adv Mat Devices & Nanotechnol, Piscataway, NJ 08854 USA
[6] Rutgers State Univ, Dept Phys, Piscataway, NJ 08854 USA
[7] Rutgers State Univ, Dept Mat Sci, Piscataway, NJ 08854 USA
[8] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada
[9] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA
基金
美国国家科学基金会;
关键词
ENERGY-LOSS SPECTROSCOPY; ABERRATION; EXCITATIONS; INTERFACES; FILMS;
D O I
10.1038/nature13870
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Vibrational spectroscopies using infrared radiation(1,2), Raman scattering(3), neutrons(4), low-energy electrons(5) and inelastic electron tunnelling(6) are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few a angstroms when enhanced by the presence of a sharp metallic tip(6,7). If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high-and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample-that is, for 'aloof' spectroscopy that largely avoids radiation damage.
引用
收藏
页码:209 / +
页数:9
相关论文
共 42 条
[1]  
[Anonymous], 2004, INFRARED SPECTROSCOP, DOI [10.1002/0470011149, DOI 10.1002/0470011149]
[2]  
[Anonymous], 2005, Raman spectroscopy for chemical analysis M
[3]   HYDROGEN INTERACTION AND BOUND MULTIPHONON STATES IN VIBRATIONAL-SPECTRA OF TITANIUM HYDRIDES [J].
BASHKIN, IO ;
KOLESNIKOV, AI ;
MALYSHEV, VY ;
PONYATOVSKY, G ;
PRAGER, M ;
TOMKINSON, J .
ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 1993, 179 :335-342
[4]   Sub-angstrom resolution using aberration corrected electron optics [J].
Batson, PE ;
Dellby, N ;
Krivanek, OL .
NATURE, 2002, 418 (6898) :617-620
[5]  
Bock J., 1970, Journal of the American Ceramic Society, V53, P69, DOI 10.1111/j.1151-2916.1970.tb12012.x
[6]   INTERACTION OF 25-KEV ELECTRONS WITH LATTICE VIBRATIONS IN LIF . EXPERIMENTAL EVIDENCE FOR SURFACE MODES OF LATTICE VIBRATION [J].
BOERSCH, H ;
GEIGER, J ;
STICKEL, W .
PHYSICAL REVIEW LETTERS, 1966, 17 (07) :379-&
[7]   Near-field electron energy loss spectroscopy of nanoparticles [J].
Cohen, H ;
Maniv, T ;
Tenne, R ;
Hacohen, YR ;
Stephan, O ;
Colliex, C .
PHYSICAL REVIEW LETTERS, 1998, 80 (04) :782-785
[8]  
Cueva P, 2013, MICROSC MICROANAL, V19, P1130
[9]   Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride [J].
Dai, S. ;
Fei, Z. ;
Ma, Q. ;
Rodin, A. S. ;
Wagner, M. ;
McLeod, A. S. ;
Liu, M. K. ;
Gannett, W. ;
Regan, W. ;
Watanabe, K. ;
Taniguchi, T. ;
Thiemens, M. ;
Dominguez, G. ;
Castro Neto, A. H. ;
Zettl, A. ;
Keilmann, F. ;
Jarillo-Herrero, P. ;
Fogler, M. M. ;
Basov, D. N. .
SCIENCE, 2014, 343 (6175) :1125-1129
[10]  
de Abajo FJG, 1999, INST PHYS CONF SER, P327