ON PERMUTATION GROUPS OF DEGREE A PRODUCT OF TWO PRIME-POWERS

被引:17
作者
Li, Cai Heng [1 ]
Li, Xianhua [2 ]
机构
[1] Univ Western Australia, Sch Math & Statit, Crawley, WA, Australia
[2] Suzhou Univ, Sch Math Sci, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite simple group; Permutation groups; Primitive; FINITE SIMPLE-GROUPS; MAXIMAL-SUBGROUPS; SYMMETRICAL GRAPHS; TRANSITIVE GRAPHS; ORDER; CLASSIFICATION; ODD;
D O I
10.1080/00927872.2013.823500
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine finite simple groups which have a subgroup of index with exactly two distinct prime divisors. Then from this we derive a classification of primitive permutation groups of degree a product of two prime-powers.
引用
收藏
页码:4722 / 4743
页数:22
相关论文
共 35 条
[1]   ON THE MAXIMAL-SUBGROUPS OF THE FINITE CLASSICAL-GROUPS [J].
ASCHBACHER, M .
INVENTIONES MATHEMATICAE, 1984, 76 (03) :469-514
[2]  
COHEN AM, 1992, P LOND MATH SOC, V64, P21
[3]  
Conway J. H., 1985, ATLAS of Finite Groups
[4]   MINIMAL DEGREE FOR A PERMUTATION REPRESENTATION OF A CLASSICAL GROUP [J].
COOPERSTEIN, BN .
ISRAEL JOURNAL OF MATHEMATICS, 1978, 30 (03) :213-235
[5]   FLAG - TRANSITIVE FINITE SIMPLE-GROUPS [J].
DELANDTSHEER, A .
ARCHIV DER MATHEMATIK, 1986, 47 (05) :395-400
[6]  
Dixon J. D., 1996, Graduate Text in Mathematics, V163
[7]   ON LARGE ZSIGMONDY PRIMES [J].
FEIT, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 102 (01) :29-36
[8]   Linear groups with orders having certain large prime divisors [J].
Guralnick, R ;
Penttila, T ;
Praeger, CE ;
Saxl, J .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1999, 78 :167-214
[9]   SUBGROUPS OF PRIME POWER INDEX IN A SIMPLE-GROUP [J].
GURALNICK, RM .
JOURNAL OF ALGEBRA, 1983, 81 (02) :304-311
[10]  
Kleidman P., PREPRINT