Development and construction of a neutron beam line for accelerator-based boron neutron capture synovectomy

被引:17
|
作者
Gierga, DP [1 ]
Yanch, JC
Shefer, RE
机构
[1] MIT, Dept Nucl Engn, Cambridge, MA 02139 USA
[2] Newton Sci Inc, Cambridge, MA 02139 USA
关键词
rheumatoid arthritis; boron neutron capture synovectomy (BNCS); boron neutron capture therapy (BNCT); radiation synovectomy; neutron beam; accelerator;
D O I
10.1118/1.598885
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
A potential application of the B-10(n,alpha)Li-7 nuclear reaction for the treatment of rheumatoid arthritis, termed Boron Neutron Capture Synovectomy (BNCS), is under investigation. In an arthritic joint, the synovial lining becomes inflamed and is a source of great pain and discomfort for the afflicted patient. The goal of BNCS is to ablate the synovium, thereby eliminating the symptoms of the arthritis. A BNCS treatment would consist of an intra-articular injection of boron followed by neutron irradiation of the joint. Monte Carlo radiation transport calculations have been used to develop an accelerator-based epithermal neutron beam line for BNCS treatments. The model in eludes a moderator/reflector assembly, neutron producing target, target cooling system, and arthritic joint phantom. Single and parallel opposed beam irradiations have been modeled for the human knee, human finger, and rabbit knee joints. Additional reflectors, placed to the side and back of the joint, have been added to the model and have been shown to improve treatment times and skin doses by about a factor of 2. Several neutron-producing charged particle reactions have been examined for BNCS, including the Be-9(p,n) reaction at proton energies of 4 and 3.7 MeV, the Be-9(d,n) reaction at deuteron energies of 1.5 and 2.6 MeV, and the Li-7(p,n) reaction at a proton energy of 2.5 MeV. For an accelerator beam current of 1 mA and synovial boron uptake of 1000 ppm, the time to deliver a therapy dose of 10 000 RBE cGy ranges from 3 to 48 min, depending on the treated joint and the neutron producing charged particle reaction. The whole-body effective dose that a human would incur during a knee treatment has been estimated to be 3.6 rem or 0.75 rem, for 1000 ppm or 19 000 ppm synovial boron uptake, respectively, although the shielding configuration has not yet been optimized. The Monte Carlo design process culminated in the construction, installation, and testing of a dedicated BNCS beam line on the high-current tandem electrostatic accelerator at the Laboratory for Accelerator Beam Applications at the Massachusetts Institute of Technology. (C) 2000 American Association of Physicists in Medicine. [S0094-2405(00)02401-9].
引用
收藏
页码:203 / 214
页数:12
相关论文
共 50 条
  • [1] Development of an Accelerator-Based Epithermal Neutron Source for Boron Neutron Capture Therapy
    S. Yu. Taskaev
    Physics of Particles and Nuclei, 2019, 50 : 569 - 575
  • [2] Development of an Accelerator-Based Epithermal Neutron Source for Boron Neutron Capture Therapy
    Taskaev, S. Yu.
    PHYSICS OF PARTICLES AND NUCLEI, 2019, 50 (05) : 569 - 575
  • [3] Development of an online neutron beam monitoring system for accelerator-based boron neutron capture therapy in a hospital
    Takada, Masashi
    Yagi, Natsumi
    Nakamura, Satoshi
    Shimada, Kenzi
    Itami, Jyun
    Igaki, Hiroshi
    Nakamura, Masaru
    Nunomiya, Tomoya
    Endo, Satoru
    Kajimoto, Tsuyoshi
    Tanaka, Kenichi
    Aoyama, Kei
    Narita, Masakuni
    Nakamura, Takashi
    MEDICAL PHYSICS, 2024,
  • [4] Design for an accelerator-based orthogonal epithermal neutron beam for boron neutron capture therapy
    Allen, DA
    Beynon, TD
    Green, S
    MEDICAL PHYSICS, 1999, 26 (01) : 71 - 76
  • [5] Neutron beam design and dosimetric evaluation for accelerator-based Boron Neutron Capture Therapy
    Bortolussi, S.
    Postuma, I.
    Protti, N.
    Fatemi, S.
    Magni, C.
    Gonzalez, S.
    Altieri, S.
    RADIOTHERAPY AND ONCOLOGY, 2019, 133 : S1024 - S1024
  • [6] Accelerator-based neutron source for boron neutron capture therapy
    Ivanov, A. A.
    Smirnov, A. N.
    Taskaev, S. Yu
    Bayanov, B. F.
    Belchenko, Yu, I
    Davydenko, V., I
    Dunaevsky, A.
    Emelev, I. S.
    Kasatov, D. A.
    Makarov, A. N.
    Meekins, M.
    Kuksanov, N. K.
    Popov, S. S.
    Salimov, R. A.
    Sanin, A. L.
    Sorokin, I. N.
    Sycheva, T., V
    Shudlo, I. M.
    Vorob'ev, D. S.
    Cherepkov, V. G.
    Fadeev, S. N.
    PHYSICS-USPEKHI, 2022, 65 (08) : 834 - 851
  • [7] Current development status of accelerator-based neutron source for boron neutron capture therapy
    Kumada, Hiroaki
    Sakae, Takeji
    Sakurai, Hideyuki
    EPJ TECHNIQUES AND INSTRUMENTATION, 2023, 10 (01)
  • [8] Current development status of accelerator-based neutron source for boron neutron capture therapy
    Hiroaki Kumada
    Takeji Sakae
    Hideyuki Sakurai
    EPJ Techniques and Instrumentation, 10
  • [9] Neutron beam design for boron neutron capture synovectomy
    Binello, E
    Shefer, RE
    Yanch, JC
    ADVANCES IN NEUTRON CAPTURE THERAPY, VOLS I AND II: VOL I: MEDICINE AND PHYSICS, VOL II: CHEMISTRY AND BIOLOGY, 1997, 1132 : A459 - A463
  • [10] A study on out-of-field leakage of an accelerator-based neutron beam for boron neutron capture therapy
    You, Zhen-Fan
    Huang, Chun-Kai
    Liu, Yen-Wan Hsueh
    FRONTIERS IN ONCOLOGY, 2024, 13