Numerical simulation of acoustic band gaps in homogenized elastic composites

被引:22
作者
Rohan, Eduard [1 ]
Miara, Bernadette [2 ]
Seifrt, Frantisek [1 ]
机构
[1] Univ W Bohemia, Fac Sci Appl, Dept Mech, Plzen 30614, Czech Republic
[2] ESIEE, Lab Modelisat & Simulat Numer, F-93160 Noisy Le Grand, France
关键词
Microstructures; Elastic waves; Negative mass; Dispersion; Band gaps; Homogenization; DESIGN;
D O I
10.1016/j.ijengsci.2008.12.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The dispersion of acoustic or elastodynamic waves in elastic composites are studied using the homogenized model. We consider heterogeneous periodic structures consisting of soft but heavy inclusions embedded in a stiffer matrix. By virtue of the asymptotic homogenization technique in conjunction with an appropriate scaling of the elasticity coefficients in the inclusions, the limit model exhibits the band gaps in wave propagation due to the negative effective mass. This phenomenon can be revealed by studying guided waves in discrete mass-spring structures with scale-dependent parameters. The main purpose of the paper is to justify the applicability of the homogenized model of the heterogeneous elastic continuum for prediction of the band gaps in structures featured by a finite scale of heterogeneities. We show the band gaps numerical identification and discus aspects of anisotropy, microstructure geometry and material contrast between the constituents in the context of the long wave dispersion. (c) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:573 / 594
页数:22
相关论文
共 27 条
[1]   Bloch wave homogenization and spectral asymptotic analysis [J].
Allaire, G ;
Conca, C .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (02) :153-208
[2]  
[Anonymous], 2000, Elastic Waves in Solids, Free and Guided Propagation
[3]   DERIVATION OF THE DOUBLE POROSITY MODEL OF SINGLE-PHASE FLOW VIA HOMOGENIZATION THEORY [J].
ARBOGAST, T ;
DOUGLAS, J ;
HORNUNG, U .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (04) :823-836
[4]  
AURIAULT JL, 1985, ARCH MECH, V37, P269
[5]   Multiscale modeling of elastic waves: Theoretical justification and numerical simulation of band gaps [J].
Avila, A. ;
Griso, G. ;
Miara, B. ;
Rohan, E. .
MULTISCALE MODELING & SIMULATION, 2008, 7 (01) :1-21
[6]   Phononic band gaps in linearized elasticity. [J].
Avila, A ;
Griso, G ;
Miara, B .
COMPTES RENDUS MATHEMATIQUE, 2005, 340 (12) :933-938
[7]   Homogenization near resonances and artificial magnetism from dielectrics [J].
Bouchitté, G ;
Felbacq, D .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (05) :377-382
[8]   Periodic unfolding and homogenization [J].
Cioranescu, D ;
Damlamian, A ;
Griso, G .
COMPTES RENDUS MATHEMATIQUE, 2002, 335 (01) :99-104
[9]  
DAMLAMIAN A, 2005, GAKUTO INT SERIES MA, V24, P119
[10]   Waves in microstructured materials and dispersion [J].
Engelbrecht, J ;
Berezovski, A ;
Pastrone, F ;
Braun, M .
PHILOSOPHICAL MAGAZINE, 2005, 85 (33-35) :4127-4141