Fredholm operators, evolution semigroups, and periodic solutions of nonlinear periodic systems

被引:7
作者
Miyazaki, Rinko [1 ]
Kim, Dohan [2 ]
Naito, Toshiki [3 ]
Shin, Jong Son [4 ]
机构
[1] Shizuoka Univ, Grad Sch Engn, Hamamatsu, Shizuoka 4328561, Japan
[2] Seoul Natl Univ, Dept Math, Seoul 151747, South Korea
[3] Univ Electrocommun, Chofu, Tokyo 1828585, Japan
[4] Hosei Univ, Fac Sci & Engn, Koganei, Tokyo 1848584, Japan
基金
新加坡国家研究基金会;
关键词
Nonlinear periodic system; Evolution semigroup; Fredholm operator; Periodic solution; Normal eigenvalue; Decomposition; EQUATIONS;
D O I
10.1016/j.jde.2014.08.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a Banach space and L the generator of the evolution semigroup associated with the tau-periodic evolutionary process {U(t, s)}(t >= s) on the space P-tau(X) of all tau-periodic continuous X-valued functions. We give criteria for the existence of periodic solutions to nonlinear systems of the form Lp = -is an element of F(p, is an element of) under the condition that 1 is a normal eigenvalue of the monodromy operator U(tau, 0). The proof is based on a new decomposition of the space P-tau(X) by constructing a right inverse of L. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:4214 / 4247
页数:34
相关论文
共 27 条
[1]  
[Anonymous], 1987, SPECTRAL THEORY DIFF
[2]  
[Anonymous], 1995, Analytic semigroups and optimal regularity in parabolic problems
[3]   ON THE SPECTRAL THEORY OF ELLIPTIC DIFFERENTIAL OPERATORS .1. [J].
BROWDER, FE .
MATHEMATISCHE ANNALEN, 1961, 142 (01) :22-130
[4]  
Cesari L., 1976, LECTURE NOTES PURE A, V19, P1
[5]  
Chicone C., 1999, MATH SURVEYS MONOGR, V70
[6]  
Chow S.-N., 2012, Methods of Bifurcation Theory, V251
[7]  
Coddington E. A., 1955, THEORY ORDINARY DIFF
[8]  
Farkas M, 1994, Periodic motions
[9]  
Hale J.K., 1963, Oscillations in Nonlinear Systems
[10]  
Hale J.K., 2013, FIELDS I COMMUN, V64, P1