Modified T-splines

被引:32
作者
Kang, Hongmei [1 ]
Chen, Falai [1 ]
Deng, Jiansong [1 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
关键词
T-mesh; T-spline; Knot deletion; Surface fitting; Surface simplification; POLYNOMIAL SPLINES;
D O I
10.1016/j.cagd.2013.09.001
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
T-splines are a generalization of NURBS surfaces, the control meshes of which allow T-junctions. T-splines can significantly reduce the number of superfluous control points in NURBS surfaces, and provide valuable operations such as local refinement and merging of several B-splines surfaces in a consistent framework. In this paper, we propose a variant of T-splines called Modified T-splines. The basic idea is to construct a set of basis functions for a given T-mesh that have the following nice properties: non-negativity, linear independence, partition of unity and compact support. Due to the good properties of the basis functions, the Modified T-splines are favorable both in adaptive geometric modeling and isogeometric analysis. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:827 / 843
页数:17
相关论文
共 16 条
[1]   Isogeometric analysis using T-splines [J].
Bazilevs, Y. ;
Calo, V. M. ;
Cottrell, J. A. ;
Evans, J. A. ;
Hughes, T. J. R. ;
Lipton, S. ;
Scott, M. A. ;
Sederberg, T. W. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) :229-263
[2]   Linear independence of the T-spline blending functions associated with some particular T-meshes [J].
Buffa, A. ;
Cho, D. ;
Sangalli, G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (23-24) :1437-1445
[3]  
Cottrell J.A., 2009, Isogeometric Analysis: Towards Unification of Computer Aided Design and Finite Element Analysis
[4]   Polynomial splines over hierarchical T-meshes [J].
Deng, Jiansong ;
Chen, Falai ;
Li, Xin ;
Hu, Changqi ;
Tong, Weihua ;
Yang, Zhouwang ;
Feng, Yuyu .
GRAPHICAL MODELS, 2008, 70 (76-86) :76-86
[5]   Adaptive isogeometric analysis by local h-refinement with T-splines [J].
Doerfel, Michael R. ;
Juettler, Bert ;
Simeon, Bernd .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) :264-275
[6]   Polynomial splines over locally refined box-partitions [J].
Dokken, Tor ;
Lyche, Tom ;
Pettersen, Kjell Fredrik .
COMPUTER AIDED GEOMETRIC DESIGN, 2013, 30 (03) :331-356
[7]   Parametrization and smooth approximation of surface triangulations [J].
Floater, MS .
COMPUTER AIDED GEOMETRIC DESIGN, 1997, 14 (03) :231-250
[8]   Hierarchical B-spline refinement [J].
Forsey, David R. ;
Bartels, Richard H. .
Computer Graphics (ACM), 1988, 22 (04) :205-212
[9]   THB-splines: The truncated basis for hierarchical splines [J].
Giannelli, Carlotta ;
Juettler, Bert ;
Speleers, Hendrik .
COMPUTER AIDED GEOMETRIC DESIGN, 2012, 29 (07) :485-498
[10]   Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement [J].
Hughes, TJR ;
Cottrell, JA ;
Bazilevs, Y .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (39-41) :4135-4195