Tracing and constraining anthropogenic aerosol iron fluxes to the North Atlantic Ocean using iron isotopes

被引:88
作者
Conway, Tim M. [1 ]
Hamilton, Douglas S. [2 ]
Shelley, Rachel U. [3 ]
Aguilar-Islas, Ana M. [4 ]
Landing, William M. [3 ]
Mahowald, Natalie M. [2 ]
John, Seth G. [5 ]
机构
[1] Univ S Florida, Coll Marine Sci & Sch Geosci, Tampa, FL 33620 USA
[2] Cornell Univ, Dept Earth & Atmospher Sci, Atkinson Ctr Sustainable Future, Ithaca, NY USA
[3] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA
[4] Univ Alaska, Coll Fisheries & Ocean Sci, Fairbanks, AK 99701 USA
[5] Univ Southern Calif, Dept Earth Sci, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
SOLUBLE ORGANIC-MATTER; COMBUSTION AEROSOLS; MARINE AIR; SOLUBILITY; DEPOSITION; RATIOS; DUST; FE; LIMITATION; PATTERNS;
D O I
10.1038/s41467-019-10457-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Atmospheric dust is an important source of the micronutrient Fe to the oceans. Although relatively insoluble mineral Fe is assumed to be the most important component of dust, a relatively small yet highly soluble anthropogenic component may also be significant. However, quantifying the importance of anthropogenic Fe to the global oceans requires a tracer which can be used to identify and constrain anthropogenic aerosols in situ. Here, we present Fe isotope (delta Fe-56) data from North Atlantic aerosol samples from the GEOTRACES GA03 section. While soluble aerosol samples collected near the Sahara have near-crustal delta Fe-56, soluble aerosols from near North America and Europe instead have remarkably fractionated delta Fe-56 values (as light as -1.6%). Here, we use these observations to fingerprint anthropogenic combustion sources, and to refine aerosol deposition modeling. We show that soluble anthropogenic aerosol Fe flux to the global surface oceans is highly likely to be underestimated, even in the dusty North Atlantic.
引用
收藏
页数:10
相关论文
共 63 条
[1]   Dissolution of aerosol-derived iron in seawater: Leach solution chemistry, aerosol type, and colloidal iron fraction [J].
Aguilar-Islas, Ana M. ;
Wu, Jingfeng ;
Rember, Robert ;
Johansen, Anne M. ;
Shank, Lindsey M. .
MARINE CHEMISTRY, 2010, 120 (1-4) :25-33
[2]   Paleodust variability since the Last Glacial Maximum and implications for iron inputs to the ocean [J].
Albani, S. ;
Mahowald, N. M. ;
Murphy, L. N. ;
Raiswell, R. ;
Moore, J. K. ;
Anderson, R. F. ;
McGee, D. ;
Bradtmiller, L. I. ;
Delmonte, B. ;
Hesse, P. P. ;
Mayewski, P. A. .
GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (08) :3944-3954
[3]   Mineral particle size as a control on aerosol iron solubility [J].
Baker, A. R. ;
Jickells, T. D. .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (17)
[4]  
Beard BL, 2003, GEOLOGY, V31, P629, DOI 10.1130/0091-7613(2003)031<0629:IICOFC>2.0.CO
[5]  
2
[6]  
Buck C. S., 2006, GEOCHEM GEOPHY GEOSY, V7, P21
[7]   Atmospheric trace metal concentrations, solubility and deposition fluxes in remote marine air over the south-east Atlantic [J].
Chance, Rosie ;
Jickells, Timothy D. ;
Baker, Alex R. .
MARINE CHEMISTRY, 2015, 177 :45-56
[8]   The origin of water soluble particulate iron in the Asian atmospheric outflow [J].
Chuang, PY ;
Duvall, RM ;
Shafer, MM ;
Schauer, JJ .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (07) :1-4
[9]   Intercomparison of dissolved iron isotope profiles from reoccupation of three GEOTRACES stations in the Atlantic Ocean [J].
Conway, T. M. ;
John, S. G. ;
Lacan, F. .
MARINE CHEMISTRY, 2016, 183 :50-61
[10]   Constraints on soluble aerosol iron flux to the Southern Ocean at the Last Glacial Maximum [J].
Conway, T. M. ;
Wolff, E. W. ;
Roethlisberger, R. ;
Mulvaney, R. ;
Elderfield, H. E. .
NATURE COMMUNICATIONS, 2015, 6