A corrected quantitative version of the Morse lemma (vol 264, pg 815, 2013)

被引:7
作者
Gouezel, Sebastien [1 ]
Shchur, Vladimir [2 ,3 ]
机构
[1] Univ Nantes, CNRS, Lab Jean Leray, UMR 6629, 2 Rue Houssiniere, F-44322 Nantes, France
[2] Univ Calif Berkeley, Dept Integrat Biol & Stat, 4098 Valley Life Sci Bldg VLSB, Berkeley, CA 94720 USA
[3] Natl Res Univ Higher Sch Econ, Moscow 101000, Russia
关键词
Morse lemma; Gromov-hyperbolic space; Quasi-geodesic; Isabelle/HOL;
D O I
10.1016/j.jfa.2019.02.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There is a gap in the proof of the main theorem in the article [5] on optimal bounds for the Morse lemma in Gromov-hyperbolic spaces. We correct this gap, showing that the main theorem of [5] is true. We also describe a computer certification of this result. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1258 / 1268
页数:11
相关论文
共 7 条
[1]   Embeddings of Gromov hyperbolic spaces [J].
Bonk, M ;
Schramm, O .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (02) :266-306
[2]  
Bridson MR., 2013, METRIC SPACES NONPOS, DOI DOI 10.1007/978-3-662-12494-9
[3]  
COORNAERT M, 1990, LECT NOTES MATH, V1441, pR9
[4]  
GOUEZEL S, 2013, J FUNCT ANAL, V264, P815, DOI DOI 10.1016/J.JFA.2012.11.014
[5]  
Gouezel Sebastien, 2018, ARCH FORMAL PROOFS
[6]  
Shchur V., 2013, THESIS
[7]   A quantitative version of the Morse lemma and quasi-isometries fixing the ideal boundary [J].
Shchur, Vladimir .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (03) :815-836