Double-shell zinc manganate hollow microspheres embedded in carbon networks as cathode materials for high-performance aqueous zinc-ion batteries

被引:20
|
作者
Wang, Shuting [1 ,4 ]
Zhang, Shipeng [1 ]
Chen, Xiangrui [1 ]
Yuan, Guanghui [3 ]
Wang, Beibei [1 ,4 ]
Bai, Jintao [1 ,4 ]
Wang, Hui [2 ,4 ]
Wang, Gang [1 ,4 ]
机构
[1] Northwest Univ, Int Collaborat Ctr Photoelect Technol & Nano Func, Inst Photon & Photon Technol, State Key Lab Photoelect Technol & Funct Mat, Xian 710127, Peoples R China
[2] Northwest Univ, Coll Chem & Mat Sci, Key Lab Synthet & Nat Funct Mol Chem, Minist Educ, Xian 710127, Peoples R China
[3] Ankang Univ, Dept Chem & Chem Engn, Ankang 725000, Shaanxi, Peoples R China
[4] Shaanxi Joint Lab Graphene NWU, Xian 710127, Peoples R China
基金
中国国家自然科学基金;
关键词
Zinc manganate; Hollow structure; Interconnected carbon network; Waffle-like architecture; Cathode material; Aqueous zinc-ion battery; ZN-MN BATTERIES; LITHIUM-STORAGE; LONG-LIFE; ZNMN2O4; GRAPHENE; ANODE; ELECTROCATALYST; NANOPARTICLES; ELECTRODES;
D O I
10.1016/j.jcis.2020.07.053
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Currently, aqueous zinc-ion batteries are receiving extraordinary attention because of their cheap price, superior energy density and great security. However, the inferior specific capacity and low rate capability significantly hamper their further widespread application. Herein, a novel egg waffle-like architecture consisting of double-shell ZnMn2O4 hollow microspheres embedded in 2D carbon networks (ZnMn2O4@C) is designed and employed as a cathode material for aqueous zinc-ion batteries. Specifically, the ZnMn2O4@C electrode displays a capacity of 481 mAh g(-1) at 0.2 A g(-1) after 110 cycles with excellent cycling stability. The superior cycling stability of the ZnMn2O4@C electrode is ascribed to the synergistic effect of the double-shell ZnMn2O4 hollow microspheres, which offer sufficient space to withstand volume expansion during Zn2+ intercalation/deintercalation process, as well as the 2D continuous conductive and interconnected carbon network, which facilitates rapid electronic transmission and guarantees good structural mechanical stability. This study offers a fascinating cathode material and extends the available choices for manganate based-materials in rechargeable aqueous zinc-ion batteries. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:528 / 539
页数:12
相关论文
共 50 条
  • [21] Electrospun core -shell Mn 3 O 4 /carbon fibers as high-performance cathode materials for aqueous zinc -ion batteries
    Long, Jun
    Yang, Zhanhong
    Yang, Fuhua
    Cuan, Jing
    Wu, Jingxing
    ELECTROCHIMICA ACTA, 2020, 344
  • [22] Recent progress on modification strategies of both metal zinc anode and manganese dioxide cathode materials for high-performance aqueous zinc-ion batteries
    Zhou, Xiaozhong
    Li, Xiangyuan
    Pang, Junjun
    Lei, Ziqiang
    COORDINATION CHEMISTRY REVIEWS, 2025, 523
  • [23] Recent advances in cathode materials of rechargeable aqueous zinc-ion batteries
    Wang, L.
    Zheng, J.
    MATERIALS TODAY ADVANCES, 2020, 7
  • [24] Research status and prospects of cathode materials for aqueous zinc-ion batteries
    Yang W.
    Xie X.
    Wu R.
    Tian H.
    Wang X.
    Tang W.
    Deng Y.
    Liu R.
    Meitan Xuebao/Journal of the China Coal Society, 2022, 47 (09): : 3351 - 3364
  • [25] Exploration of Calcium-Doped Manganese Monoxide Cathode for High-Performance Aqueous Zinc-Ion Batteries
    Zou, Ren
    Tang, Zhiwen
    Chen, Xiaolan
    Li, Zhaohui
    Lei, Gangtie
    ENERGY & FUELS, 2022, 36 (21) : 13296 - 13306
  • [26] Mn-containing heteropolyvanadate nanoparticles as a high-performance cathode material for aqueous zinc-ion batteries
    Xiao, Haoran
    Li, Rong
    Zhu, Limin
    Chen, Xizhuo
    Xie, Lingling
    Han, Qing
    Qiu, Xuejing
    Yi, Lanhua
    Cao, Xiaoyu
    JOURNAL OF ENERGY STORAGE, 2024, 89
  • [27] Strategies of structural and defect engineering for high-performance rechargeable aqueous zinc-ion batteries
    Du, Min
    Miao, Zhenyu
    Li, Houzhen
    Sang, Yuanhua
    Liu, Hong
    Wang, Shuhua
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (35) : 19245 - 19281
  • [28] Carbon-coated hydrated vanadium dioxide for high-performance aqueous zinc-ion batteries
    Luo, Zexiang
    Zeng, Jing
    Liu, Zhen
    He, Hanbing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 906
  • [29] Modification of Zinc Anodes by In Situ ZnO Coating for High-Performance Aqueous Zinc-Ion Batteries
    Zhao, Wen
    Perera, Inosh Prabasha
    Khanna, Harshul S.
    Dang, Yanliu
    Li, Mingxuan
    Posada, Luisa F.
    Tan, Haiyan
    Suib, Steven L.
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (03) : 1172 - 1181
  • [30] Carbon-based nanomaterials for stabilizing zinc metal anodes towards high-performance aqueous zinc-ion batteries
    Li, Ying
    Guo, Ya-Fei
    Li, Zheng-Xiao
    Wang, Peng-Fei
    Xie, Ying
    Yi, Ting-Feng
    ENERGY STORAGE MATERIALS, 2024, 67