Positive-Definite Tensors to Nonlinear Complementarity Problems

被引:155
作者
Che, Maolin [1 ]
Qi, Liqun [2 ]
Wei, Yimin [3 ,4 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
[3] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[4] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Copositive tensor; Symmetric tensor; Positive-definite tensor; Diagonalizable tensors; Nonlinear complementarity problems;
D O I
10.1007/s10957-015-0773-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The main purpose of this paper was to investigate some kinds of nonlinear complementarity problems (NCP). For the structured tensors, such as symmetric positive-definite tensors and copositive tensors, we derive the existence theorems on a solution of these kinds of nonlinear complementarity problems. We prove that a unique solution of the NCP exists under the condition of diagonalizable tensors.
引用
收藏
页码:475 / 487
页数:13
相关论文
共 21 条
[1]  
[Anonymous], 2013, MATRIX COMPUTATIONS
[2]  
[Anonymous], 1999, SPRINGER SCI
[3]  
BAUMERT LD, 1967, PAC J MATH, V20, P1
[4]  
Bermudez A. J., 1994, SAVMA Symposium 1994 Proceedings., P1
[5]  
Cottle R.W., 1992, The Linear Complementarity Problem
[6]   NONLINEAR PROGRAMS WITH POSITIVELY BOUNDED JACOBIANS [J].
COTTLE, RW .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1966, 14 (01) :147-&
[7]   THE LINEAR COMPLEMENTARITY-PROBLEM, SUFFICIENT MATRICES, AND THE CRISSCROSS METHOD [J].
DENHERTOG, D ;
ROOS, C ;
TERLAKY, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 187 :1-14
[8]  
Ding W., SIAM J MATR IN PRESS
[9]   Fast Hankel tensor-vector product and its application to exponential data fitting [J].
Ding, Weiyang ;
Qi, Liqun ;
Wei, Yimin .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2015, 22 (05) :814-832
[10]  
FACCHINEI F, 2003, SPRING S OPERAT RES, P1