Extremal Polygonal Cacti for Wiener Index and Kirchhoff Index

被引:0
|
作者
Zeng, Mingyao [1 ]
Xiao, Qiqi [1 ]
Tang, Zikai [1 ]
Deng, Hanyuan [1 ]
机构
[1] Hunan Normal Univ, Coll Math & Stat, Minist Educ, Key Lab Comp & Stochast Math, Changsha 410081, Hunan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Wiener index; Kirchhoff index; Cactus; Extremal graph; RESISTANCE-DISTANCE; POLYPHENYL; GRAPHS; SPIRO; MINIMUM;
D O I
10.22052/ijmc.2020.225271.1497
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For a connected graph G, the Wiener index W(G)) of G is the sum of the distances of all pairs of vertices, the Kirchhoff index Kf(G) of G is the sum of the resistance distances of all pairs of vertices. A k-G polygonal cactus is a connected graph in which the length of every cycle is k and any two cycles have at most one common vertex. In this paper, we give the maximum and minimum values of the Wiener index and the Kirchhoff index for all k-polygonal cacti with n cycles and determine the corresponding extremal graphs, generalize results of spiro hexagonal chains with n hexagons. (C) 2020 University of Kashan Press. All rights reserved
引用
收藏
页码:201 / 211
页数:11
相关论文
共 50 条
  • [41] A Survey of Recent Extremal Results on the Wiener Index of Trees
    Lin, Hong
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2024, 92 (02) : 253 - 270
  • [42] Extremal polygonal cacti for bond incident degree indices
    Ye, Jiachang
    Liu, Muhuo
    Yao, Yuedan
    Das, Kinkar Ch
    DISCRETE APPLIED MATHEMATICS, 2019, 257 : 289 - 298
  • [43] Extending Extremal Polygonal Arrays for the Merrifield-Simmons Index
    De Ita Luna, Guillermo
    Marcial-Romero, J. Raymundo
    Hernandez, J. A.
    Maria Valdovinos, Rosa
    Romero, Marcelo
    PATTERN RECOGNITION (MCPR 2017), 2017, 10267 : 22 - 31
  • [44] Extremal Polygonal Chains Concerning Merrified-Simmons Index
    Cao, Yuefen
    Yang, Weiling
    Zhang, Fuji
    POLYCYCLIC AROMATIC COMPOUNDS, 2017, 37 (01) : 1 - 23
  • [45] Extremal Values on the Kirchhoff Index of the Line Graph of Unicyclic Networks
    Sardar, Muhammad Shoaib
    Xu, Shou-Jun
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2024, : 1523 - 1544
  • [46] Extremal Problem with Respect to Merrifield-Simmons Index and Hosoya Index of a Class of Polygonal Chains
    TIAN Wenwen
    TIAN Shuangliang
    HE Xue
    WANG Yanfeng
    Wuhan University Journal of Natural Sciences, 2014, 19 (04) : 295 - 300
  • [47] Extremal Even Polygonal Chains on Wiener Numbers
    Cao, Yuefen
    Yang, Weiling
    Zhang, Fuji
    POLYCYCLIC AROMATIC COMPOUNDS, 2020, 40 (05) : 1616 - 1623
  • [48] Extremal Wiener and Kirchhoff indices of globular caterpillars
    Ye, Luzhen
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2020, 120 (04)
  • [49] Enumeration of the Additive Degree-Kirchhoff Index in the Random Polygonal Chains
    Geng, Xianya
    Zhu, Wanlin
    AXIOMS, 2022, 11 (08)
  • [50] Enumeration of the Multiplicative Degree-Kirchhoff Index in the Random Polygonal Chains
    Zhu, Wanlin
    Geng, Xianya
    MOLECULES, 2022, 27 (17):