Some Identities of Ordinary and Degenerate Bernoulli Numbers and Polynomials

被引:1
作者
Dolgy, Dmitry, V [1 ]
Kim, Dae San [2 ]
Kwon, Jongkyum [3 ]
Kim, Taekyun [4 ]
机构
[1] Kwangwoon Univ, Hanrimwon, Seoul 139701, South Korea
[2] Sogang Univ, Dept Math, Seoul 121742, South Korea
[3] Gyeongsang Natl Univ, Dept Math Educ & ERI, Jinju 52828, Gyeongsangnamdo, South Korea
[4] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 07期
基金
新加坡国家研究基金会;
关键词
Bernoulli polynomials; degenerate Bernoulli polynomials; random variables; p-adic invariant integral on Z(p); integer power sums polynomials; Stirling polynomials of the second kind; degenerate Stirling polynomials of the second kind;
D O I
10.3390/sym11070847
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we investigate some identities on Bernoulli numbers and polynomials and those on degenerate Bernoulli numbers and polynomials arising from certain p-adic invariant integrals on Z(p). In particular, we derive various expressions for the polynomials associated with integer power sums, called integer power sum polynomials and also for their degenerate versions. Further, we compute the expectations of an infinite family of random variables which involve the degenerate Stirling polynomials of the second and some value of higher-order Bernoulli polynomials.
引用
收藏
页数:13
相关论文
共 19 条
  • [11] Kim T., 2005, ADV STUD CONT MATH, V11, P137
  • [12] Kim T., 2004, Adv. Stud. Contemp. Math. (Kyungshang), V9, P15
  • [13] Kim T., 2005, J ANAL COMPUT, V1, P117
  • [14] Kim T, 2019, ROCKY MT J MATH, V49, P521
  • [15] Identities for degenerate Bernoulli polynomials and Korobov polynomials of the first kind
    Kim, Taekyun
    Kim, Dae San
    [J]. SCIENCE CHINA-MATHEMATICS, 2019, 62 (05) : 999 - 1028
  • [16] Application of Probabilistic Method on Daehee Sequences
    Liu, Chang
    Wuyungaowa
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, 11 (01): : 69 - 78
  • [17] RYOO CHEON SEOUNG, 2009, Advanced Studies in Contemporary Mathematics, V18, P69
  • [18] Schikhof WH, 1984, CAMBRIDGE STUDIES AD, V4
  • [19] Simsek Y., 2016, J APPL FUNCT DIFFER, V1, P81