Uncertainty in Multitask Learning: Joint Representations for Probabilistic MR-only Radiotherapy Planning

被引:35
作者
Bragman, Felix J. S. [1 ]
Tanno, Ryutaro [1 ]
Eaton-Rosen, Zach [1 ]
Li, Wenqi [1 ]
Hawkes, David J. [1 ]
Ourselin, Sebastien [2 ]
Alexander, Daniel C. [1 ,3 ]
McClelland, Jamie R. [1 ]
Cardoso, M. Jorge [1 ,2 ]
机构
[1] UCL, Ctr Med Image Comp, London, England
[2] Kings Coll London, Biomed Engn & Imaging Sci, London, England
[3] Natl Univ Singapore, Clin Imaging Res Ctr, Singapore, Singapore
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT IV | 2018年 / 11073卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1007/978-3-030-00937-3_1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Multi-task neural network architectures provide a mechanism that jointly integrates information from distinct sources. It is ideal in the context of MR-only radiotherapy planning as it can jointly regress a synthetic CT (synCT) scan and segment organs-at-risk (OAR) from MRI. We propose a probabilistic multi-task network that estimates: (1) intrinsic uncertainty through a heteroscedastic noise model for spatially-adaptive task loss weighting and (2) parameter uncertainty through approximate Bayesian inference. This allows sampling of multiple segmentations and synCTs that share their network representation. We test our model on prostate cancer scans and show that it produces more accurate and consistent synCTs with a better estimation in the variance of the errors, state of the art results in OAR segmentation and a methodology for quality assurance in radiotherapy treatment planning.
引用
收藏
页码:3 / 11
页数:9
相关论文
共 11 条
[1]  
[Anonymous], ARXIV161205362
[2]  
[Anonymous], 1993, ICML
[3]  
[Anonymous], 2018, CVPR
[4]  
[Anonymous], 2017, Advances in Neural Information Processing Systems
[5]   Iterative framework for the joint segmentation and CT synthesis of MR images: application to MRI-only radiotherapy treatment planning [J].
Burgos, Ninon ;
Guerreiro, Filipa ;
McClelland, Jamie ;
Presles, Benoit ;
Modat, Marc ;
Nill, Simeon ;
Dearnaley, David ;
deSouza, Nandita ;
Oelfke, Uwe ;
Knopf, Antje-Christin ;
Ourselin, Sebastien ;
Cardoso, M. Jorge .
PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (11) :4237-4253
[6]  
Gal Y, 2016, PR MACH LEARN RES, V48
[7]   NiftyNet: a deep-learning platform for medical imaging [J].
Gibson, Eli ;
Li, Wenqi ;
Sudre, Carole ;
Fidon, Lucas ;
Shakir, Dzhoshkun I. ;
Wang, Guotai ;
Eaton-Rosen, Zach ;
Gray, Robert ;
Doel, Tom ;
Hu, Yipeng ;
Whyntie, Tom ;
Nachev, Parashkev ;
Modat, Marc ;
Barratt, Dean C. ;
Ourselin, Sebastien ;
Cardoso, M. Jorge ;
Vercauteren, Tom .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 158 :113-122
[8]   On the Compactness, Efficiency, and Representation of 3D Convolutional Networks: Brain Parcellation as a Pretext Task [J].
Li, Wenqi ;
Wang, Guotai ;
Fidon, Lucas ;
Ourselin, Sebastien ;
Cardoso, M. Jorge ;
Vercauteren, Tom .
INFORMATION PROCESSING IN MEDICAL IMAGING (IPMI 2017), 2017, 10265 :348-360
[9]  
Moeskops Pim, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P478, DOI 10.1007/978-3-319-46723-8_55
[10]  
Tanno Ryutaro, 2017, Medical Image Computing and Computer Assisted Intervention MICCAI 2017. 20th International Conference. Proceedings: LNCS 10433, P611, DOI 10.1007/978-3-319-66182-7_70