Schemes for Generating Different Nonlinear Schrodinger Integrable Equations and Their Some Properties

被引:6
作者
Zhang, Yu-feng [1 ]
Wang, Hai-feng [1 ]
Bai, Na [2 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
nonisospectral integrable hierarchy; Schrodinger equation; symmetry; EVOLUTION-EQUATIONS; HIERARCHIES; SYMMETRIES;
D O I
10.1007/s10255-022-1099-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, we want to derive a few of nonlinear Schrodinger equations with various formats and investigate their properties, such as symmetries, single soliton solutions, multi-soliton solutions, and so on. First of all, we propose an efficient and straightforward scheme for generating nonisospectral integrable hierarchies of evolution equations for which a generalized nonisospectral integrable Schrodinger hierarchy (briefly GNISH) singles out, from which we get a derivative nonlinear Schrodinger equation, a generalized nonlocal Schrodinger integrable system and furthermore we investigate the symmetries and conserved qualities of the GNISH. Next, we apply the dbar method to obtain a generalized nonlinear Schrodinger-Maxwell-Bloch (GNLS-MB) equation and its hierarchy by introducing a generalized Zakhrov-Shabat spectral problem, whose soliton solutions and gauge transformations are obtained.
引用
收藏
页码:579 / 600
页数:22
相关论文
共 23 条
[1]  
Ablowitz M. J., 1981, SOLITONS INVERSE SCA
[2]  
ABLOWITZ MJ, 1983, STUD APPL MATH, V69, P135
[3]  
Doktorov E.V., 2007, DRESSING METHOD MATH, DOI [10.1007/1-4020-6140-4, DOI 10.1007/1-4020-6140-4]
[4]   Miura-reciprocal transformations for non-isospectral Camassa-Holm hierarchies in 2+1 dimensions [J].
Estevez, P. G. ;
Sardon, C. .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2013, 20 (04) :552-564
[5]   NON-ISOSPECTRAL 1+1 HIERARCHIES ARISING FROM A CAMASSA HOLM HIERARCHY IN 2+1 DIMENSIONS [J].
Estevez, P. G. ;
Lejarreta, J. D. ;
Sardon, C. .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2011, 18 (01) :9-28
[6]   A multipotential generalization of the nonlinear diffusion equation [J].
Geng, XG ;
Ma, WX .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (04) :985-986
[7]   Soliton solutions and quasiperiodic solutions of modified Korteweg-de Vries type equations [J].
Geng, Xianguo ;
Xue, Bo .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (06)
[8]   A POWERFUL APPROACH TO GENERATE NEW INTEGRABLE SYSTEMS [J].
HU, XB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (07) :2497-2514
[9]   EXACT SOLUTION FOR A DERIVATIVE NON-LINEAR SCHRODINGER EQUATION [J].
KAUP, DJ ;
NEWELL, AC .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (04) :798-801
[10]  
Li Y.S., 1982, ACTA MATH SIN, V25, P464