Peptide aggregation in neurodegenerative disease

被引:188
作者
Murphy, RM [1 ]
机构
[1] Univ Wisconsin, Dept Chem Engn, Madison, WI 53706 USA
关键词
amyloid; prion; beta-amyloid peptide; Huntington's disease; Alzheimer's disease;
D O I
10.1146/annurev.bioeng.4.092801.094202
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In the not-so-distant past, insoluble aggregated protein was considered as uninteresting and bothersome as yesterday's trash. More recently, protein aggregates have enjoyed considerable scientific interest, as it has become clear that these aggregates play key roles in many diseases. In this review, we focus attention on three polypeptides: beta-amyloid, prion, and huntingtin, which are linked to three feared neurodegenerative diseases: Alzheimer's, "mad cow," and Huntington's disease, respectively. These proteins lack any significant primary sequence homology, yet their aggregates possess very similar features, specifically, high beta-sheet content, fibrillar morphology, relative insolubility, and protease resistance. Because the aggregates are noncrystalline, secrets of their structure at nanometer resolution are only slowly yielding to X-ray diffraction, solid-state NMR, and other techniques. Besides structure, the aggregates may possess similar pathways of assembly. Two alternative assembly pathways have been proposed: the nucleation-elongation and the template-assisted mode. These two modes may be complementary, not mutually exclusive. Strategies for interfering with aggregation, which may provide novel therapeutic approaches, are under development. The structural similarities between protein aggregates of dissimilar origin suggest that therapeutic strategies successful against one disease may have broad utility in others.
引用
收藏
页码:155 / 174
页数:20
相关论文
共 98 条
[1]   Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of β-sheets in Alzheimer's β-amyloid fibrils [J].
Antzutkin, ON ;
Balbach, JJ ;
Leapman, RD ;
Rizzo, NW ;
Reed, J ;
Tycko, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (24) :13045-13050
[2]   SOLUTION CONFORMATIONS AND AGGREGATIONAL PROPERTIES OF SYNTHETIC AMYLOID BETA-PEPTIDES OF ALZHEIMERS-DISEASE - ANALYSIS OF CIRCULAR-DICHROISM SPECTRA [J].
BARROW, CJ ;
YASUDA, A ;
KENNY, PTM ;
ZAGORSKI, MG .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 225 (04) :1075-1093
[3]   Folding of prion protein to its native α-helical conformation is under kinetic control [J].
Baskakov, IV ;
Legname, G ;
Prusiner, SB ;
Cohen, FE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (23) :19687-19690
[4]   Impairment of the ubiquitin-proteasome system by protein aggregation [J].
Bence, NF ;
Sampat, RM ;
Kopito, RR .
SCIENCE, 2001, 292 (5521) :1552-1555
[5]   Two-dimensional structure of β-amyloid(10-35) fibrils [J].
Benzinger, TLS ;
Gregory, DM ;
Burkoth, TS ;
Miller-Auer, H ;
Lynn, DG ;
Botto, RE ;
Meredith, SC .
BIOCHEMISTRY, 2000, 39 (12) :3491-3499
[6]   In-situ atomic force microscopy study of β-amyloid fibrillization [J].
Blackley, HKL ;
Sanders, GHW ;
Davies, MC ;
Roberts, CJ ;
Tendler, SJB ;
Wilkinson, MJ .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 298 (05) :833-840
[7]   Prion protein peptides: Optimal toxicity and peptide blockade of toxicity [J].
Brown, DR .
MOLECULAR AND CELLULAR NEUROSCIENCE, 2000, 15 (01) :66-78
[8]   Bacterial and yeast chaperones reduce both aggregate formation and cell death in mammalian cell models of Huntington's disease [J].
Carmichael, J ;
Chatellier, J ;
Woolfson, A ;
Milstein, C ;
Fersht, AR ;
Rubinsztein, DC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (17) :9701-9705
[9]   Transmissible spongiform encephalopathies, amyloidoses and yeast prions: Common threads? [J].
Caughey, B .
NATURE MEDICINE, 2000, 6 (07) :751-754
[10]   Inhibition of protease-resistant prion protein formation by porphyrins and phthalocyanines [J].
Caughey, WS ;
Raymond, LD ;
Horiuchi, M ;
Caughey, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (21) :12117-12122