Identification of crack features in fresh jujube using Vis/NIR hyperspectral imaging combined with image processing

被引:77
|
作者
Yu, Keqiang [1 ]
Zhao, Yanru [1 ]
Li, Xiaoli [1 ]
Shao, Yongni [1 ]
Zhu, Fengle [1 ]
He, Yong [1 ]
机构
[1] Zhejiang Univ, Coll Biosyst Engn & Food Sci, Hangzhou 310058, Zhejiang, Peoples R China
关键词
Hyperspectral imaging; Crack feature; Identification; Chemometrics; Fresh jujube; NEAR-INFRARED SPECTROSCOPY; FRUIT-QUALITY; CALIBRATION; PREDICTION; DEFECTS; APPLES; FOOD;
D O I
10.1016/j.compag.2014.01.016
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Detection of crack defect in fresh jujube is a critical process to guarantee jujube quality and meet processing demands of fresh jujube fruit. This study presented a novel method for identification of fresh jujube crack feature using hyperspectral imaging in visible and near infrared (Vis/NIR) region (380-1030 nm) combined with image processing. Hyperspectral image data of samples were used to extract the characteristic wavebands by chemometrics, which integrated the method of partial least squares regression (PLSR), principal component analysis (PCA) of spatial hyperspectral image (SPCA) and independent component analysis (ICA) of spatial hyperspectral image (SICA). On the basis of the selected wavebands, least-squares support vector machine (LS-SVM) discrimination models were established to correctly distinguish between cracked and sound fresh jujube. The performance of discriminating model was evaluated using receiver operating characteristics (ROC) curve analysis. The results demonstrated that PLSR LS-SVM discrimination model with a high accuracy of 100% had the optimal performance of "area" = 1 and "std" = 0. For acquiring rich crack feature information, SPCA was also carried on images at the five characteristic wavebands (467, 544, 639, 673 and 682 nm) selected by PLSR. Finally, the SPC-4 image was explored to identify the location and area of crack feature through a developed image processing algorithm. The results revealed that hyperspectral imaging combined with image processing technique could achieve the rapid identification of crack features in fresh jujube. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [21] The Automated Detection of Fusarium Wilt on Phalaenopsis Using VIS-NIR and SWIR Hyperspectral Imaging
    Shih, Min-Shao
    Chang, Kai-Chun
    Chou, Shao-An
    Liu, Tsang-Sen
    Ouyang, Yen-Chieh
    REMOTE SENSING, 2023, 15 (17)
  • [22] A new quantitative index for the assessment of tomato quality using Vis-NIR hyperspectral imaging
    Shao, Yuanyuan
    Shi, Yukang
    Qin, Yongdong
    Xuan, Guantao
    Li, Jing
    Li, Quankai
    Yang, Fengjuan
    Hu, Zhichao
    FOOD CHEMISTRY, 2022, 386
  • [23] Nondestructive freshness evaluation of mackerel fish using Vis/NIR hyperspectral imaging and multivariate analysis
    Ryu, Jiwon
    Hong, Suk-Ju
    Park, Seongmin
    Kim, Eungchan
    Lee, Chang-Hyup
    Kim, Sungjay
    Ismail, Azfar
    Lee, ChangSug
    Kim, DongHee
    Jo, Cheorun
    Kim, Ghiseok
    JOURNAL OF FOOD ENGINEERING, 2024, 377
  • [24] Fast detection and visualization of early decay in citrus using Vis-NIR hyperspectral imaging
    Li, Jiangbo
    Huang, Wenqian
    Tian, Xi
    Wang, Chaopeng
    Fan, Shuxiang
    Zhao, Chunjiang
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2016, 127 : 582 - 592
  • [25] Detection of Insect Damage in Green Coffee Beans Using VIS-NIR Hyperspectral Imaging
    Chen, Shih-Yu
    Chang, Chuan-Yu
    Ou, Cheng-Syue
    Lien, Chou-Tien
    REMOTE SENSING, 2020, 12 (15)
  • [26] Evaluation of biomarkers that influence the freshness of beef during storage using VIS/NIR hyperspectral imaging
    Ismail, Azfar
    Park, Seongmin
    Kim, Hye-Jin
    Choi, Minwoo
    Kim, Hyun-Jun
    Hong, Heesang
    Kim, Ghiseok
    Jo, Cheorun
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2025, 216
  • [27] Pixel based bruise region extraction of apple using Vis-NIR hyperspectral imaging
    Che, Wenkai
    Sun, Laijun
    Zhang, Qian
    Tan, Wenyi
    Ye, Dandan
    Zhang, Dan
    Liu, Yangyang
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2018, 146 : 12 - 21
  • [28] Ripeness monitoring of two cultivars of nectarine using VIS-NIR hyperspectral reflectance imaging
    Munera, Sandra
    Amigo, Jose Manuel
    Blasco, Jose
    Cubero, Sergio
    Talens, Pau
    Aleixos, Nuria
    JOURNAL OF FOOD ENGINEERING, 2017, 214 : 29 - 39
  • [29] Early bruise detection, classification and prediction in strawberry using Vis-NIR hyperspectral imaging
    Shanthini, K. S.
    Francis, Jobin
    George, Sudhish N.
    George, Sony
    Devassy, Binu M.
    FOOD CONTROL, 2025, 167
  • [30] Detection of Pesticide Residues in Mulberey Leaves Using Vis-Nir Hyperspectral Imaging Technology
    Sun Jun
    Jiang Shuying
    Zhang Meixia
    Mao Hanping
    Wu Xiaohong
    Li Qinglin
    JOURNAL OF RESIDUALS SCIENCE & TECHNOLOGY, 2016, 13 : S125 - S131