Polygon dissections and some generalizations of cluster complexes

被引:13
作者
Tzanaki, Eleni [1 ]
机构
[1] Univ Crete, Dept Math, Iraklion 71409, Crete, Greece
关键词
generalized cluster complex; generalized associahedron; generalized Narayana numbers;
D O I
10.1016/j.jcta.2005.08.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let W be a Weyl group corresponding to the root system A(n-1) or B-n. We define a simplicial complex Delta(m)(W) in terms of polygon dissections for such a group and any positive integer m. For m = 1, Delta(m)(W) is isomorphic to the cluster complex corresponding to W, defined in [S. Fomin, AX Zelevinsky, Y-systems and generalized associahedra, Ann. of Math. 158 (2003) 977-1018]. We enumerate the faces of Delta(m)(W) and show that the entries of its h-vector are given by the generalized Narayana. numbers N-W(m) (i), defined in W [C.A. Athamasiadis, On a refinement of the generalized Catalan numbers for Weyl groups, Trans. Amer. Math. Soc. 357 (2005) 179-196]. We also prove that for any m >= 1 the complex Delta(m)(W) is shellable and hence Cohen-Macaulay. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:1189 / 1198
页数:10
相关论文
共 13 条