Exact solutions of holonomic quantum computation

被引:11
|
作者
Tanimura, S [1 ]
Hayashi, D
Nakahara, M
机构
[1] Osaka City Univ, Grad Sch Engn, Osaka 5588585, Japan
[2] Kyoto Univ, Dept Engn Phys & Mech, Kyoto 6068501, Japan
[3] Kinki Univ, Dept Phys, Higashiosaka, Osaka 5778502, Japan
基金
日本学术振兴会;
关键词
quantum computer; unitary gate; holonomy; isoholonomic problem; small circle; control theory;
D O I
10.1016/j.physleta.2004.03.057
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Holonomic quantum computation is analyzed from geometrical viewpoint. We develop an optimization scheme in which an arbitrary unitary gate is implemented with a small circle in a complex projective space. Exact solutions for the Hadamard, CNOT and 2-qubit discrete Fourier transformation gates are explicitly constructed. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:199 / 205
页数:7
相关论文
共 50 条
  • [1] Exact solutions of the isoholonomic problem and the optimal control problem in holonomic quantum computation
    Tanimura, S
    Nakahara, M
    Hayashi, D
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (02)
  • [2] Exact solutions for universal holonomic quantum gates
    Karimipour, V
    Majd, N
    PHYSICAL REVIEW A, 2004, 70 (01): : 012320 - 1
  • [3] Holonomic quantum computation
    Zanardi, P
    Rasetti, M
    PHYSICS LETTERS A, 1999, 264 (2-3) : 94 - 99
  • [4] Holonomic quantum computation
    Zanardi, Paolo
    Rasetti, Mario
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 264 (2-3): : 94 - 99
  • [5] Decoherence in holonomic quantum computation
    Florio, Giuseppe
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2006, 13 (03): : 263 - 272
  • [6] Holonomic Quantum Computation in Subsystems
    Oreshkov, Ognyan
    PHYSICAL REVIEW LETTERS, 2009, 103 (09)
  • [7] Geometric and holonomic quantum computation
    Zhang, Jiang
    Kyaw, Thi Ha
    Filipp, Stefan
    Kwek, Leong-Chuan
    Sjoqvist, Erik
    Tong, Dianmin
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2023, 1027 : 1 - 53
  • [8] Composite nonadiabatic holonomic quantum computation
    Xu, G. F.
    Zhao, P. Z.
    Xing, T. H.
    Sjoqvist, Erik
    Tong, D. M.
    PHYSICAL REVIEW A, 2017, 95 (03)
  • [9] Holonomic quantum computation with Josephson networks
    Siewert, J
    Faoro, L
    Fazio, R
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2002, 233 (03): : 490 - 496
  • [10] Advances in nonadiabatic holonomic quantum computation
    Zhao, Peizi
    Xu, Guofu
    Tong, Dianmin
    CHINESE SCIENCE BULLETIN-CHINESE, 2021, 66 (16): : 1935 - 1945