Interphase bonding in organic-inorganic hybrid materials using aminophenyltrimethoxysilane

被引:59
作者
Sarwar, MI [1 ]
Ahmad, Z [1 ]
机构
[1] Quaid I Azam Univ, Dept Chem, Islamabad 45320, Pakistan
关键词
D O I
10.1016/S0014-3057(99)00046-4
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Several types of silica and titania-aramid hybrid materials were prepared using a sol-gel process. The aramid chains were prepared by the reaction of a mixture of m- and p-phenylene diamines and terephthaloyl chloride in dimethylacetamide. Addition of different amounts of tetraethoxysilane and tetrapropylorthotitanate in the polymer solution, and their subsequent hydrolysis-condensation yielded silica and titania networks, respectively. in the aramid matrix. The chemical bonding between the organic and inorganic phases was achieved by end-capping the aramid chains with aminophenyltrimethoxysilane. In-situ hydrolysis/condensation of tetraethoxysilane or tetrapropylorthotitanate along with that of aminophenyl-trimethoxysilane was carried out to produce silica and titania networks chemically bonded to aramid chains. Thin transparent and tough films containing up to 20 wt% of metal oxides were prepared. The storage and the loss moduli as a function of temperature were measured using dynamic mechanical thermal analysis. A greater shift in the alpha-relaxation associated with the glass transition temperature (T-g) was observed in case of chemically bonded ceramers as compared to the unbonded and has been explained in term of greater interaction between the organic and inorganic phases. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:89 / 94
页数:6
相关论文
共 50 条
  • [21] Toughening of polycarbonate with organic-inorganic hybrid materials
    Zhang, ZY
    Zhao, N
    Wei, W
    Wu, D
    Sun, YH
    POLYMERS & POLYMER COMPOSITES, 2006, 14 (03) : 291 - 300
  • [22] Organic-inorganic hybrid materials processing and applications
    Schmidt, HK
    Mennig, M
    Nonninger, R
    Oliveira, PW
    Schirra, H
    ORGANIC/INORGANIC HYBRID MATERIALS II, 1999, 576 : 395 - 407
  • [23] Hybrid organic-inorganic materials for photonic applications
    Banerjee, Partha P.
    Evans, Dean R.
    Lee, Wei
    Reshetnyak, Victor Yu
    Tansu, Nelson
    OPTICAL MATERIALS EXPRESS, 2013, 3 (08): : 1149 - 1151
  • [24] Organic-Inorganic Hybrid Materials for Enantioselective Organocatalysis
    Srivastava, Vivek
    Gaubert, Kevin
    Pucheault, Mathieu
    Vaultier, Michel
    CHEMCATCHEM, 2009, 1 (01) : 94 - 98
  • [25] Hybrid Organic-Inorganic Thermoelectric Materials and Devices
    Jin, Huile
    Li, Jun
    Iocozzia, James
    Zeng, Xin
    Wei, Pai-Chun
    Yang, Chao
    Li, Nan
    Liu, Zhaoping
    He, Jr Hau
    Zhu, Tiejun
    Wang, Jichang
    Lin, Zhiqun
    Wang, Shun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (43) : 15206 - 15226
  • [26] MOLECULAR DESIGN OF HYBRID ORGANIC-INORGANIC MATERIALS
    SANCHEZ, C
    RIBOT, F
    JOURNAL DE PHYSIQUE IV, 1993, 3 (C7): : 1349 - 1355
  • [27] Mechanical properties of hybrid organic-inorganic materials
    Mammeri, F
    Le Bourhis, E
    Rozes, L
    Sanchez, C
    JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (35-36) : 3787 - 3811
  • [28] Blue emitting hybrid organic-inorganic materials
    Cordoncillo, E
    Guaita, FJ
    Escribano, P
    Philippe, C
    Viana, B
    Sanchez, C
    OPTICAL MATERIALS, 2001, 18 (03) : 309 - 320
  • [29] Hybrid organic-inorganic and polymeric materials for thermoelectrics
    Segalman, Rachel A.
    Yee, Shannon
    Coates, Nelson
    Russ, Boris
    Urban, Jeffrey J.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [30] Organic-inorganic hybrid materials for nanoimprint lithography
    Katayama, Junko
    Yamaki, Shigeru
    Mitsuyama, Masahiro
    Hanabata, Makoto
    EMERGING LITHOGRAPHIC TECHNOLOGIES X, PTS 1 AND 2, 2006, 6151 : U1189 - U1199