TIGHT CODEGREE CONDITION FOR THE EXISTENCE OF LOOSE HAMILTON CYCLES IN 3-GRAPHS

被引:24
作者
Czygrinow, Andrzej [1 ]
Molla, Theodore [1 ]
机构
[1] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
关键词
hypergraphs; Hamilton cycle; absorbing lemma; 3-UNIFORM HYPERGRAPHS;
D O I
10.1137/120890417
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 2006, Kuhn and Osthus [J. Combin. Theory Ser. B, 96 (2006), pp. 767-821] showed that if a 3-graph H on n vertices has minimum codegree at least (1/4 + o(1)) n and n is even, then H has a loose Hamilton cycle. In this paper, we prove that the minimum codegree of n/4 suffices. The result is tight.
引用
收藏
页码:67 / 76
页数:10
相关论文
共 5 条
[1]   A MEASURE OF ASYMPTOTIC EFFICIENCY FOR TESTS OF A HYPOTHESIS BASED ON THE SUM OF OBSERVATIONS [J].
CHERNOFF, H .
ANNALS OF MATHEMATICAL STATISTICS, 1952, 23 (04) :493-507
[2]  
KOH T., 1954, Colloq. Math., V3, P50
[3]   Multicolored Hamilton cycles and perfect matchings in pseudorandom graphs [J].
Kuehn, Daniela ;
Osthus, Deryk .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2006, 20 (02) :273-286
[4]   Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree [J].
Kuhn, Daniela ;
Osthus, Deryk .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (06) :767-821
[5]   A Dirac-type theorem for 3-uniform hypergraphs [J].
Rödl, V ;
Rucinski, A ;
Szemerédi, E .
COMBINATORICS PROBABILITY & COMPUTING, 2006, 15 (1-2) :229-251