On a list coloring conjecture of Reed

被引:14
|
作者
Bohman, T [1 ]
Holzman, R
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[2] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
关键词
list coloring; choosability; vetrtex-color degree;
D O I
10.1002/jgt.10054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct graphs with lists of available colors for each vertex, such that the size of every list exceeds the maximum vertex-color degree, but there exists no proper coloring from the lists. This disproves a conjecture of Reed. (C) 2002 Wiley Periodicals, Inc.
引用
收藏
页码:106 / 109
页数:4
相关论文
共 50 条
  • [1] Equitable list coloring of graphs
    Wang, WF
    Lih, KW
    TAIWANESE JOURNAL OF MATHEMATICS, 2004, 8 (04): : 747 - 759
  • [2] List Coloring with a Bounded Palette
    Bonamy, Marthe
    Kang, Ross J.
    JOURNAL OF GRAPH THEORY, 2017, 84 (01) : 93 - 103
  • [3] Between coloring and list-coloring: μ-coloring
    Bonomo, Flavia
    Cecowski Palacio, Mariano
    ARS COMBINATORIA, 2011, 99 : 383 - 398
  • [4] List coloring digraphs
    Bensmail, Julien
    Harutyunyan, Ararat
    Ngoc Khang Le
    JOURNAL OF GRAPH THEORY, 2018, 87 (04) : 492 - 508
  • [5] List coloring with requests
    Dvorak, Zdenek
    Norin, Sergey
    Postle, Luke
    JOURNAL OF GRAPH THEORY, 2019, 92 (03) : 191 - 206
  • [6] Criticality, the list color function, and list coloring the cartesian product of graphs
    Kaul, Hemanshu
    Mudrock, Jeffrey A.
    JOURNAL OF COMBINATORICS, 2021, 12 (03) : 479 - 514
  • [7] A note on list-coloring powers of graphs
    Kosar, Nicholas
    Petrickova, Sarka
    Reiniger, Benjamin
    Yeager, Elyse
    DISCRETE MATHEMATICS, 2014, 332 : 10 - 14
  • [8] Hajos' theorem for list coloring
    Král, D
    DISCRETE MATHEMATICS, 2004, 287 (1-3) : 161 - 163
  • [9] Equitable List Coloring and Treewidth
    Pelsmajer, Michael J.
    JOURNAL OF GRAPH THEORY, 2009, 61 (02) : 127 - 139
  • [10] A list analogue of equitable coloring
    Kostochka, AV
    Pelsmajer, MJ
    West, DB
    JOURNAL OF GRAPH THEORY, 2003, 44 (03) : 166 - 177