On a list coloring conjecture of Reed

被引:15
作者
Bohman, T [1 ]
Holzman, R
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[2] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
关键词
list coloring; choosability; vetrtex-color degree;
D O I
10.1002/jgt.10054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct graphs with lists of available colors for each vertex, such that the size of every list exceeds the maximum vertex-color degree, but there exists no proper coloring from the lists. This disproves a conjecture of Reed. (C) 2002 Wiley Periodicals, Inc.
引用
收藏
页码:106 / 109
页数:4
相关论文
共 6 条
[1]  
AHARONI R, IN PRESS COMBINATORI
[2]   PROBABILISTIC METHODS IN COLORING AND DECOMPOSITION PROBLEMS [J].
ALON, N .
DISCRETE MATHEMATICS, 1994, 127 (1-3) :31-46
[3]  
HAXELL PE, IN PRESS COMBIN PROB
[4]  
Reed B, 1999, J GRAPH THEOR, V31, P149, DOI 10.1002/(SICI)1097-0118(199906)31:2<149::AID-JGT8>3.3.CO
[5]  
2-R
[6]  
REED B, IN PRESS J COMBIN B