CHARACTERIZING ALGEBRAIC CURVES WITH INFINITELY MANY INTEGRAL POINTS

被引:9
作者
Alvanos, Paraskevas [1 ]
Bilu, Yuri [2 ]
Poulakis, Dimitrios [1 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Math, Thessaloniki 54124, Greece
[2] Univ Bordeaux 1, Inst Math, F-33405 Talence, France
关键词
Algebraic curves; integral points; Siegel's theorem; GENUS ZERO; EQUATIONS;
D O I
10.1142/S1793042109002274
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A classical theorem of Siegel asserts that the set of S-integral points of an algebraic curve C over a number. field is. finite unless C has genus 0 and at most two points at infinity. In this paper, we give necessary and sufficient conditions for C to have infinitely many S-integral points.
引用
收藏
页码:585 / 590
页数:6
相关论文
共 8 条
[1]   TERNARY FORM EQUATIONS [J].
BEUKERS, F .
JOURNAL OF NUMBER THEORY, 1995, 54 (01) :113-133
[2]  
Hindry M, 2000, GRADUATE TEXTS MATH
[3]  
Lang S., 1983, Fundamentals of Diophantine geometry, DOI 10.1007/978-1-4757-1810-2
[4]   On the Zariski-density of integral points on a complement of hyperplanes in Pn [J].
Levin, Aaron .
JOURNAL OF NUMBER THEORY, 2008, 128 (01) :96-104
[5]   Affine curves with infinitely many integral points [J].
Poulakis, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (05) :1357-1359
[6]   Solving genus zero diophantine equations with at most two infinite valuations [J].
Poulakis, D ;
Voskos, E .
JOURNAL OF SYMBOLIC COMPUTATION, 2002, 33 (04) :479-491
[7]  
Siegel C.L., 1929, Abh. Preuss. Akad. Wiss. Phys.-Math. Kl., V1, P41
[8]   On the distribution of integer points on curves of genus zero [J].
Silverman, JH .
THEORETICAL COMPUTER SCIENCE, 2000, 235 (01) :163-170