A Deep Sparse Coding Method for Fine-Grained Visual Categorization

被引:0
作者
Guo, Lihua [1 ]
Guo, Chenggang [2 ]
机构
[1] South China Univ Technol, Sch Elect & Informat, Guangzhou 510641, Guangdong, Peoples R China
[2] Univ Elect Sci & Technol China, Chengdu 610054, Peoples R China
来源
2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2016年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the fine-grained categories, images have lager diversity in their intra categories. Meanwhile, they have more similarity in their inter categories. Therefore, images are difficultly distinguish during fine-grained visual classification(FGVC). This paper proposes a deep sparse coding framework to implement the fine-grained visual categorization. In our framework, deep layer structures with sparse coding are used to learn different spatial features. Especially, for categories with asymmetric structure, a quick and efficient pose estimation method is introduced to calibrate their poses. This framework is evaluated using two fine-grained datasets, i.e. Oxford 102 flowers dataset and the CUB-200-2011 bird dataset. Final experimental results show that the performance of our proposed system is highly competitive with state-of-the-art algorithms.
引用
收藏
页码:632 / 639
页数:8
相关论文
共 50 条
[41]   Coarse Label Refined Knowledge Reasoning for Fine-Grained Visual Categorization [J].
Zhao, Xiangyu ;
Peng, Yuxin .
INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING, 2018, 11266 :349-359
[42]   Fine-Grained Visual Categorization by Localizing Object Parts With Single Image [J].
Zheng, Xiangtao ;
Qi, Lei ;
Ren, Yutao ;
Lu, Xiaoqiang .
IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 :1187-1199
[43]   Attention Convolutional Binary Neural Tree for Fine-Grained Visual Categorization [J].
Ji, Ruyi ;
Wen, Longyin ;
Zhang, Libo ;
Du, Dawei ;
Wu, Yanjun ;
Zhao, Chen ;
Liu, Xianglong ;
Huang, Feiyue .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :10465-10474
[44]   A benchmark dataset and approach for fine-grained visual categorization in complex scenes [J].
Zhang, Xiang ;
Zhang, Keran ;
Zhao, Wanqing ;
Luo, Hangzai ;
Zhong, Sheng ;
Tang, Lei ;
Peng, Jinye ;
Fan, Jianping .
DIGITAL SIGNAL PROCESSING, 2023, 137
[45]   PFNet: a novel part fusion network for fine-grained visual categorization [J].
Jingyun Liang ;
Jinlin Guo ;
Yanming Guo ;
Songyang Lao .
Multimedia Tools and Applications, 2020, 79 :33397-33416
[46]   VegFru: A Domain-Specific Dataset for Fine-grained Visual Categorization [J].
Hou, Saihui ;
Feng, Yushan ;
Wang, Zilei .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :541-549
[47]   DSP: Discriminative Spatial Part modeling for Fine-Grained Visual Categorization [J].
Yao, Hantao ;
Zhang, Dongming ;
Li, Jintao ;
Zhou, Jianshe ;
Zhang, Shiliang ;
Zhang, Yongdong .
IMAGE AND VISION COMPUTING, 2017, 63 :24-37
[48]   Data-free Knowledge Distillation for Fine-grained Visual Categorization [J].
Shao, Renrong ;
Zhang, Wei ;
Yin, Jianhua ;
Wang, Jun .
2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, :1515-1525
[49]   Fair Comparison: Quantifying Variance in Results for Fine-grained Visual Categorization [J].
Gwilliam, Matthew ;
Teuscher, Adam ;
Anderson, Connor ;
Farrell, Ryan .
2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, :3308-3317
[50]   Increasingly Specialized Generative Adversarial Network for fine-grained visual categorization [J].
Lin, Zhongqi ;
Gao, Wanlin ;
Huang, Feng ;
Jia, Jingdun .
KNOWLEDGE-BASED SYSTEMS, 2021, 232