A Deep Sparse Coding Method for Fine-Grained Visual Categorization

被引:0
作者
Guo, Lihua [1 ]
Guo, Chenggang [2 ]
机构
[1] South China Univ Technol, Sch Elect & Informat, Guangzhou 510641, Guangdong, Peoples R China
[2] Univ Elect Sci & Technol China, Chengdu 610054, Peoples R China
来源
2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2016年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the fine-grained categories, images have lager diversity in their intra categories. Meanwhile, they have more similarity in their inter categories. Therefore, images are difficultly distinguish during fine-grained visual classification(FGVC). This paper proposes a deep sparse coding framework to implement the fine-grained visual categorization. In our framework, deep layer structures with sparse coding are used to learn different spatial features. Especially, for categories with asymmetric structure, a quick and efficient pose estimation method is introduced to calibrate their poses. This framework is evaluated using two fine-grained datasets, i.e. Oxford 102 flowers dataset and the CUB-200-2011 bird dataset. Final experimental results show that the performance of our proposed system is highly competitive with state-of-the-art algorithms.
引用
收藏
页码:632 / 639
页数:8
相关论文
共 50 条
[31]   Universal Fine-Grained Visual Categorization by Concept Guided Learning [J].
Bi, Qi ;
Zhou, Beichen ;
Ji, Wei ;
Xia, Gui-Song .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2025, 34 :394-409
[32]   Category attention transfer for efficient fine-grained visual categorization [J].
Liao, Qiyu ;
Wang, Dadong ;
Xu, Min .
PATTERN RECOGNITION LETTERS, 2022, 153 :10-15
[33]   Attentional Kernel Encoding Networks for Fine-Grained Visual Categorization [J].
Hu, Yutao ;
Yang, Yandan ;
Zhang, Jun ;
Cao, Xianbin ;
Zhen, Xiantong .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (01) :301-314
[34]   To Know and To Learn About the Integration of Knowledge Representation and Deep Learning for Fine-Grained Visual Categorization [J].
Setti, Francesco .
PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISIGRAPP 2018), VOL 5: VISAPP, 2018, :387-392
[35]   Birdsnap: Large-scale Fine-grained Visual Categorization of Birds [J].
Berg, Thomas ;
Liu, Jiongxin ;
Lee, Seung Woo ;
Alexander, Michelle L. ;
Jacobs, David W. ;
Belhumeur, Peter N. .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :2019-2026
[36]   Filtration and Distillation: Enhancing Region Attention for Fine-Grained Visual Categorization [J].
Liu, Chuanbin ;
Xie, Hongtao ;
Zha, Zheng-Jun ;
Ma, Lingfeng ;
Yu, Lingyun ;
Zhang, Yongdong .
THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 :11555-11562
[37]   Multiscale attention dynamic aware network for fine-grained visual categorization [J].
Ou, Jichu ;
Li, Wanyi ;
Huang, Jingmin ;
Huang, Xiaojie ;
Xie, Xuan .
ELECTRONICS LETTERS, 2023, 59 (01)
[38]   Classification-Specific Parts for Improving Fine-Grained Visual Categorization [J].
Korsch, Dimitri ;
Bodesheim, Paul ;
Denzler, Joachim .
PATTERN RECOGNITION, DAGM GCPR 2019, 2019, 11824 :62-75
[39]   Multistage attention region supplement transformer for fine-grained visual categorization [J].
Mei, Aokun ;
Huo, Hua ;
Xu, Jiaxin ;
Xu, Ningya .
VISUAL COMPUTER, 2025, 41 (03) :1873-1889
[40]   Exploring part-aware segmentation for fine-grained visual categorization [J].
Pang, Cheng ;
Yao, Hongxun ;
Sun, Xiaoshuai ;
Zhao, Sicheng ;
Zhang, Yanhao .
MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (23) :30291-30310