Automatic Classification of Retinal Optical Coherence Tomography Images With Layer Guided Convolutional Neural Network

被引:84
作者
Huang, Laifeng [1 ]
He, Xingxin [1 ]
Fang, Leyuan [1 ]
Rabbani, Hossein [2 ]
Chen, Xiangdong [3 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
[2] Isfahan Univ Med Sci, Med Image & Signal Proc Res Ctr, Esfahan 81745319, Iran
[3] Hunan Univ Chinese Med, Dept Ophthalmol, Hosp 1, Changsha 410082, Hunan, Peoples R China
基金
中国博士后科学基金;
关键词
Optical coherence tomography (OCT); convolutional neural network (CNN); OCT classification; MACULAR DEGENERATION; OCT; SEGMENTATION; EDEMA;
D O I
10.1109/LSP.2019.2917779
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Optical coherence tomography (OCT) enables instant and direct imaging of morphological retinal tissue and has become an essential imaging modality for ophthalmology diagnosis. As one of the important morphological retinal characteristics, the structural information of retinal layers provides meaningful diagnostic information and is closely related to several retinal diseases. In this letter, we propose a novel layer guided convolutional neural network (LGCNN) to identify normal retina and three common types of macular pathologies, namely, diabetic macular edema, drusen, and choroidal neovascularization. Specifically, an efficient segmentation network is first employed to generate the retinal layer segmentation maps, which can delineate two lesion-related retinal layers associated with the meaningful retinal lesions. Then, two well-designed subnetworks in LGCNN are utilized to integrate the information of two lesion-related layers. Consequently, LGCNN can efficiently focus on the meaningful lesion-related layer regions to improve OCT classification. The experimental results conducted on two clinically acquired datasets demonstrate the effectiveness of the proposed method.
引用
收藏
页码:1026 / 1030
页数:5
相关论文
共 34 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Drusen in age-related macular degeneration: Pathogenesis, natural course, and laser photocoagulation-induced regression [J].
Abdelsalam, A ;
Del Priore, L ;
Zarbin, MA .
SURVEY OF OPHTHALMOLOGY, 1999, 44 (01) :1-29
[3]  
Albarrak A., 2013, PROC INT C MED IMAGE, P59
[4]  
[Anonymous], 2015, Nature, DOI [10.1038/nature14539, DOI 10.1038/NATURE14539]
[5]  
[Anonymous], 2015, ICLR
[6]  
[Anonymous], J OPHTHALMOLOGY
[7]  
[Anonymous], IEEE T MED IMAGING
[8]   Cellular Characterization of OCT and Outer Retinal Bands Using Specific Immunohistochemistry Markers and Clinical Implications [J].
Cuenca, Nicolas ;
Ortuno-Lizaran, Isabel ;
Pinilla, Isabel .
OPHTHALMOLOGY, 2018, 125 (03) :407-422
[9]   Clinically applicable deep learning for diagnosis and referral in retinal disease [J].
De Fauw, Jeffrey ;
Ledsam, Joseph R. ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Tomasev, Nenad ;
Blackwell, Sam ;
Askham, Harry ;
Glorot, Xavier ;
O'Donoghue, Brendan ;
Visentin, Daniel ;
van den Driessche, George ;
Lakshminarayanan, Balaji ;
Meyer, Clemens ;
Mackinder, Faith ;
Bouton, Simon ;
Ayoub, Kareem ;
Chopra, Reena ;
King, Dominic ;
Karthikesalingam, Alan ;
Hughes, Cian O. ;
Raine, Rosalind ;
Hughes, Julian ;
Sim, Dawn A. ;
Egan, Catherine ;
Tufail, Adnan ;
Montgomery, Hugh ;
Hassabis, Demis ;
Rees, Geraint ;
Back, Trevor ;
Khaw, Peng T. ;
Suleyman, Mustafa ;
Cornebise, Julien ;
Keane, Pearse A. ;
Ronneberger, Olaf .
NATURE MEDICINE, 2018, 24 (09) :1342-+
[10]   Iterative fusion convolutional neural networks for classification of optical coherence tomography images [J].
Fang, Leyuan ;
Jin, Yuxuan ;
Huang, Laifeng ;
Guo, Siyu ;
Zhao, Guangzhe ;
Chen, Xiangdong .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 59 :327-333