Minimal Surfaces in Hyperbolic 3-Manifolds

被引:4
作者
Coskunuzer, Baris [1 ]
机构
[1] Univ Texas Dallas, Richardson, TX 75083 USA
关键词
MANIFOLDS; HYPERSURFACES; AREA; EXISTENCE;
D O I
10.1002/cpa.21961
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show the existence of smoothly embedded closed minimal surfaces in infinite volume hyperbolic 3-manifolds except for some special cases. (C) 2020 Wiley Periodicals LLC
引用
收藏
页码:114 / 139
页数:26
相关论文
共 37 条
[1]  
Agol I., 2004, PREPRINT
[2]   Renormalized Area and Properly Embedded Minimal Surfaces in Hyperbolic 3-Manifolds [J].
Alexakis, Spyridon ;
Mazzeo, Rafe .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 297 (03) :621-651
[3]   COMPLETE MINIMAL VARIETIES IN HYPERBOLIC SPACE [J].
ANDERSON, MT .
INVENTIONES MATHEMATICAE, 1982, 69 (03) :477-494
[4]  
Benedetti R., 1992, Lectures on hyperbolic geometry, pxiv+330
[5]   HYPERBOLIC MANIFOLDS WITH ARBITRARILY SHORT GEODESICS [J].
BONAHON, F ;
OTAL, JP .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1988, 20 :255-261
[6]   ENDS OF HYPERBOLIC MANIFOLDS OF DIMENSION-3 [J].
BONAHON, F .
ANNALS OF MATHEMATICS, 1986, 124 (01) :71-158
[7]   Norms on the cohomology of hyperbolic 3-manifolds [J].
Brock, Jeffrey F. ;
Dunfield, Nathan M. .
INVENTIONES MATHEMATICAE, 2017, 210 (02) :531-558
[8]   Shrinkwrapping and the taming of hyperbolic 3-manifolds [J].
Calegari, D ;
Gabai, D .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 19 (02) :385-446
[9]   Group invariant Peano curves [J].
Cannon, James W. ;
Thurston, William P. .
GEOMETRY & TOPOLOGY, 2007, 11 :1315-1355
[10]   Existence of minimal hypersurfaces in complete manifolds of finite volume [J].
Chambers, Gregory R. ;
Liokumovich, Yevgeny .
INVENTIONES MATHEMATICAE, 2020, 219 (01) :179-217